PartnerWorld

|
I
e
O
Q
|
o
&

N
S
L
3
S

March 2000

Technical Magazine

PartnerWorld for
Developers

Developers

II mr»‘ /ll” ﬁ\!)p‘“fi

ahead...

by Jean Swanson

Nu\\ that the Y2K challenge is behind us, we

can concentrate on how to grow the IBM*
Developer Connection for you, our customers.
Here are just a few of the ideas under considera-
tion on how we can make our offering even better
for the new millennium.

You spoke and we listened. We're adding
more products like Linux, Lotus® and Windows
20004, compilers and development tools for XML,
W t*h.\'plu-r(-*. DB2* and Java® that you have told
us you want and need. We're also looking into
delivering the Developer Connection on media
other than CDs.

We're also pursuing information to publish in
the magazine that will help keep you ahead of the
competition. In this issue of the magazine, you'll
find more articles on hot new tools like
“Command Framework for e-business” on page 2.
The article introduces command beans that pro-
vide a structured way for the client interface to
invoke server-side business logic or access data.

Find out how to build database servlets with
WebSphere Studio in the article on page 6. The
author describes how to build a servlet that updates
an employee record in the DB2 sample database.

You’'ll also find articles on designing an archi-
tecture for a Data Warehouse Populating System,
installing the Team Repository Server for
Visual \;_H" for Java on Windows NT*, using
DTDs in XML, pervasive computing, Sash

Weblication for Windows, and Java 2 Security.

In this issue

It's full speed ahead... FRONT COVER
Command Framework for e-business 2
Building Database Servlets with WebSphere Studio 6
Designing an architecture for a Data Warehouse 9
Populating System

Installing the team repository server for 12
VisualAge for Java on Windows NT

DTDs in the realm of XML 15

www.developer.ibm.com/ devcon/

During the past four years, IBM’s technology

leadership and view of e-business have helped
transform the Internet. We're now on the brink of
another shift in the technology world. Customers
increasingly are demanding open standards for
interoperability across disparate platforms.

To meet this demand, a developer needs
access to the technical information and tools that
can }u'|p accelerate (lt'\v]upmn-nl efforts, deliver
solutions faster and stay ahead in the technology
race. The Developer Connection team is working
to ensure your development needs are met in the

year 2000 and beyond.

The Pervasive Computing paradigm 18

Java cryptography Part 2: 20
Key generation and management

Sash Weblications for Windows: 23
An overview for Programmers

Understanding cryptographic messages in e-business

All that JAAS: An overview of the Java
Authentication and Authorization Services

8 8

www.deve]oper.ibm.com/ devcon/

Command F'ramework _
for e-business

By George Copeland,
Matthew McClain and
Jim Hsu

vaically. e-business

applications are driven
by a set of client inter-
actions to server-side
business logic, as depict-
ed in Figure 1. As
shown at the center of
the diagram, Command
Beans provide a struc-
tured way for the client
interface to invoke
server-side business
logic or access data. This
article introduces an

extensible “Command

Framework” and
demonstrates how it can be an important com-
ponent of e-business. It also provides some sam-
ple code to get you started in writing and using

your very own C()mmand B(‘i:llls.

Why Command Beans?

There are two major problems that the
Command Framework attempts to address
One problem is performance. The granularity
of artifacts on the server (such as, objects,
tables, procedure calls, files, etc.) often causes
a single client-initiated business logic request
to involve several round-trip messages
between the client and server. This might
entail extra calls to perform the business task
and then impose additional calls to retrieve
the results of that task.

If the client and target server are not in
the same Java Virtual Machine (JVM), these
calls go between processes and are, therefore,
expensive in terms of computer resources. If
the calls must go over a network, they are
even more costly. To prevent unnecessary
delays and improve application performance,
it is advantageous to perform a business task
in as few interactions between the client and
server sides as is natural to the task. Command
Beans provide the necessary building blocks to
achieve this.

Another problem is that there are several
possible styles for how business logic can be

2

e I R R R R R R R R R R]

implemented, including Enterprise
JavaBeans (EJB), JDBC direct database
access, JDBC access to stored proce-
dures, the Common Connector
Framework, file system access, etc. In
addition to different implementation
programming models, each of these
styles has a different way to invoke a
request to execute business logic.
Because the Command Framework is
generic and extensible, it can hide all
these different types of server invocation
mechanisms under a simple and uni-
form mechanism.
Server-side execution of
Command Beans
A Command Bean (hereafter called a
"command”) is a JavaBean that encapsulates a
" which is

where all commands are actually executed.

single request to a “target server,

The target server can run in the same JVM as
the client or run in a separate JVM. The client
instantiates the command, sets its input data
and tells it to execute. The command infra-
structure determines the target server and
passes a copy of the command to that target
server. The target server executes the com-
mand and returns a copy of the executed
command back to the client. The client then
can get any output data from the command.
This process allows the command to be
executed within the environment of a target

server, so that multiple accesses by the com-

Command Beans provide
the necessary building blocks
to improve application
performance and prevent
unneccessary delays.

§ 0 0 0000000000000 00060000000000000000000006000060000088060000000000000000000

(92}

Command
Beans
% |~
action Database
/ Controller
E.©
. e ©
\/ > External
\- —
e
ettt Object Model
Business

Logic
Figure 1. Web Interaction model

mand to server resources avoids distributed
overhead. Any server can be a target if it sup-
ports Java access to its resources and provides
a protocol that allows a serialized command to
be sent between a client JVM and the server
JVM. Figure 2 illustrates the interaction

among objects in the Command Framework.

Commands in a transactional
environment

One exciting use of commands is in a
transactional environment. This example
describes an IBM* WebSphen“ funds transfer
transaction that is initiated from a Lotus
Domino agent.

If the agent calls each entity EJB separate-
ly, many remote calls are made. First, the
agent must create a transaction coordinator.
Then, it makes the following remote calls:

Lookup account home

N

Narrow home object
3. Find source account
4. Call withdrawal method
5. Find destination account
6. Call deposit method
7. End transaction
If the agent calls a helper session EJB, the
number of remote calls decreases somewhat:
1. Lookup fundsTransfer home

N

Narrow home object

=

Create session bean

-

Call transfer method with source account,
destination account and amount

Destroy session bean

With commands, the agent can simply
invoke an EJB command target. The only
remote call in this case is: Call execute method
on command

Instantiating a Command

' There are several ways to instantiate a com-
mand. The fastest and most efficient way is
with a constructor:

MyCommand myCommand = new MyCommand();
The standard JavaBean mechanism uses

Beans.instantiate where the beanName is either
a class or instance name:

MyCommand myCommand =
(MyCommand) Beans.instantiate(null, beanName);

Y/ The most flexible way is a factory whose
parameters can be used to determine the class

or bean name:
l MyCommand myCommand = (MyCommand) factory.create(...);

Because each of the above techniques have
different advantages that fit different scenarios,
the Command Framework does not specify how
instantiation should be done. A given concrete
command usually specifies the preferred
method of its creation.

Command lifecycle

When a command has been instantiated, it is
in the “new” state. (See Figure 3 for an illustra-
tion of state transition in commands.) The com-
mand interface provides a minimum set of meth-
ods common to all commands that a client uses
to control the life cycle of a command. For each
specific command class, some input properties
are required and others are optional. When all
the required input properties have been set, the
command is in the “initialized” state.

The command interface introduces the fol-
lowing three methods:

+ public boolean isReadyToCallExecute();

* public void execute()
throwsCommandException;
+ public void reset();

The isReadyToCallExecute method returns
true if all required inputs are set.

The execute method should not be called
until all the required input properties have
been set (that is, it is in the “initialized” state).
After the execute method is called, the com-
mand goes from the “initialized” state to the
“executed” state.

The reset method retains previously set

input properties but resets output properties on

cessssssscssscssscnse

“esescsssccssssssscsssnnss

cesssesssne

cecsessssccsnns

cesssscens

.

the object back to their original values prior
to any execute calls (such as, null or 0).
Resetting the output properties prevents
exposing outdated output values of previous
command executions to later executions.

Reusing the same command instance is
convenient if there are several complex input
properties that do not need to be changed for
the next invocation. This reuse also can
avoid the overhead of instantiation and

garbage collection.

Compensable Commands

The CompensableCommand interface is
an extension of the Command interface,
which allows a command to be associated
with another command that compensates for
its actions. This action can be thought of as
“undoing” the command for which it pro-
vides compensation. Some actions, such as
sending e-mail, cannot be literally “undone."
In those cases, a CompensableCommand does
the best possible job of reversing the action,
such as sending out a cancellation notifica-
tion through e-mail. CompensableCommands
also are useful if holding locks across two
events causes unacceptable data contention.

CompensableCommand introduces only

one method:

public Command getCompensatingCommand();

A client wanting to reverse a Command
called reservationCommand would do the fol-
lowing:

reservationCommand.getCompensatingCommand().
execute();

The client calls the
getCompensatingCommand method on an exe-
cuted command as illustrated in Figure 3. It
does not change the state of the target com-
mand. The returned compensating command is
in the initialized state.

Alternatively, the client could initialize a
compensating command directly if its input
properties (for example, the reservation num-
ber) were known.

For example, the implementation of
makeReservation.getCompensatingCommand

might be as follows:

Command getCompensatingCommand() {
CancelReservation ¢ = new CancelReservation();
c.setReservationNumber(

this.getReservationNumber());
return c;

c d Client JVM

et Target Server JVM
command returnet server
letient “";’:)"“’ ;.:l?:‘y target command ::e:'r command|
o) (rc) copy
........ news<assseonl
setinputPropertyA(a) =
nput
[—— execute —s {
[isReadyToCallExecute
l— getCommancdTarget(c) — {
fe— getCommandTarget —| t
e~ getCommandTargetName —| ¢
th- new:- o
t
executeCommancc) ———m=|{
copy command
copy. [W’M
re }
2> hasOutputProperties
== setOutputProperties(rc)
}
X |- getOutputProperty
\¥ I gatOutputProperty Y =4

Figure 2. Targetable Command Interaction diagram (dis-

tributed case)
MakeReservation command

SBUOX getyyy
new
Beans. -I'GSLJ -
_factorycreate f o, SSOX ol iibed executed
reset
getCx g
CancelReservation command /Iefufr}:s i
(compensation for MakeReservation). -
setXXX v getyyy
ey last V. execute
Beans. required
_factory.create) new | SetXXX | initialized executed

Figure 3. Command Suite diagram

Recommended client interface
To fit naturally into standard JavaBean pro-
gramming, extenders of the Command
Framework should follow the standard

cessssssessssene

JavaBean naming guidelines. Input and output
data for a command should be done using
JavaBean properties. Each input property (such

as, XXX) has a method whose signature is pub-
lic void setXXX(XXX xxx);

A command’s output data is presented as

cesscescne

JavaBean output properties. Each output prop-
erty (such as, YYY) has a method whose signa-
ture is public YYY getYYY();

The output methods should not be called
until the execute method has been called and

csesecne

the command is in the “executed” state.

The property “get” and “set” methods are

not part of the Command interface because

they are different for each class, depending on
what the properties are for the command.

: However, following the standard JavaBeans
naming guidelines ensures interoperability with
the widest range of tooling.
TargetableCommands and
CommandTargets

cescscsccccne

A CommandTarget interface is the wrap-
per interface for a target server JVM where a

CONTINUED ON PAGE 4

ceessssssnses

www.develoy

~ibm.com/devcon/

CONTINUED FROM PAGE 3

command can be executed. The

CommandTarget extends java.rmi.Remote, so

that it can potentially be an EJBObject

(either SessionBean or EntityBean). A

CommandTarget implementation is responsi-

ble for the proper execution of a command

in a particular target server environment.

This typically involves the following:

1. Copying the command over a server-
specific protocol to the target server’s JVM
(such as RMI).

2. Executing the command in the target
server’s JVM.

3. Copying the executed command over a
server-specific protocol back to the
client’s JVM.

Each target server environment will typical-
ly need just one class that implements the
CommandTarget interface. The
TargetableCommand interface is an extension
of the Command interface that allows a com-
mand to be directed to a particular
CommandTarget for execution. This interface
has two ways to specify which CommandTarget
a command is associated with a client.

If the client has references to server

cessscsscnns

objects, it can set the CommandTarget directly

on the command by calling:

" public void setCommandTarget (
CommandTarget commandTarget);

Otherwise, if the client is not directly
aware of server objects, it can set the
CommandTarget’s bean name on the com-
mand by calling:

public void setCommandTargetName (
String targetName);

There are corresponding “get” methods for
these so that the command runtime can
access them.

Additional methods in the
TargetableCommand interface are used to
manage the TargetableCommand.

The TargetableCommand’s implementa-
tion of the execute method is called in the
client and handles the distributed issues.
Because of this, a separate method is provided
for the command writer to tell the command
runtime the business logic of the command
that should be called in the target server:

public void performExecute() throws Exception;

When the client and target server are in
different JVMs, the returned command is a
different instance than the one to which the

4

cee “escssscscscssssens

client has a reference. It is a copy that has
been executed, so its output properties are
filled in. The following method allows the
command writer to tell the command runtime
how to copy the output properties from the
returned command instance to the client’s
command instance:

public void setOutputProperties(
TargetableCommandfromCommand);

There is a default implementation for this

. method that uses introspection. Due to the

Java language security model, the implemen-
tation is often limited to copying only public
fields. Therefore, for optimum results, write
your own implementation for each command.
If a command has no output properties,
then copying the command back to the client
is not needed and copying the output proper-
ties into the client’s command instance is not
needed. The following method allows the
command writer to tell the command runtime
whether there are any output properties to

allow these optimizations:

public boolean hasOutputProperties();

The default implementation for this
method returns true.

TargetPolicy

Because there are multiple ways to deter-
mine which CommandTarget to use for a
TargetableCommand, a policy has to be estab-
lished about how these interact. Rather than
burn this policy into the
TargetableCommandImpl implementation, a
separate TargetPolicy interface is used to
allow different policies to be plugged into the
framework. This has a single method:

public CommandTargetgetCommandTarget (
TargetableCommand command);

The TargetableCommand]mpl class adds
the following static methods to allow a

TargetPolicy class to be set and queried:

public static void setTargetPolicy (
TargetPolicytargetPolicy);
public static TargetPolicy getTargetPolicy();

A default implementation of the
Targetpolicy interface, named
TargetPolicyDefault, is provided.
TargetPolicyDefault adds the following meth-
ods to register and unregister the mapping
between TargetableCommand and
CommandTarget bean names:

The policy implemented by the

sesssssscns

sesscnns cessens

esesssccsssssce

seesssssscsssscens

cessssess

cesssee

TargetPolicyDefault class is the following:

public void registerCommand(String commandBeanName,

String targetBeanName);

public void unregisterCommand (

String commandBeanName);

If the TargetableCommand parameter of
the TargetPolicy.getCommandTarget
method contains a CommandTarget
(obtainable through the
TargetableCommand.getCommandTarget
method), use it.

Otherwise, if the TargetableCommand
contains a CommandTarget bean name
(obtainable via the TargetableCommand.
getCommandTargetName method) use it.
Otherwise, if the TargetPolicyDefault con-
tains a registered mapping between
Command bean name and
CommandTarget bean name (setable via
the TargetPolicyDefault.registerCommand i
method) use it.

Otherwise, if a default target bean name
has been set (setable via the
TargetPolicyDefault.setDefaultTargetName
method) use it.

Otherwise, return null.

TargetableCommandimpl

An implementation of the

TargetableCommand interface is provided by

the TargetableCommandImpl class. The

TargetableCommandImpl provides a default

implementation for the following methods:

this.outputPropertyA = fromCommand.outputP
this.outputPropertyB = fromCommand. s s

hasOutputProperties: This implementation
returns the hasOutputProperties instance
variable. False can be returned as an opti-
mization that can eliminate unnecessary
copying and message overhead. In this case,
the hasOutputProperties instance variable
should be set to false rather than overriding
this method, because the instance variable
also is used in the execute method. This
method is made final to enforce this.
setOutputProperties: This uses introspec-
tion to copy all instance variables, provid-
ed that all instance variables are non-pri-
vate and non-package (that is, they must
be public or protected). This implementa-
tion does not copy final, static or transient
fields. If this default implementation is not
acceptable, the command writer can over-
ride this method. A typical implementation

just does the following:

bu A
putPropertyB;

+ execute: This does the following:

1. Throws an
UnsetInputPropertiesException if this
command's isReadyToCallExecute
method returns false.

2. Gets the CommandTarget for this com-
mand from the TargetPolicy.

3. Calls the CommandTarget.
executeCommand method to execute
this command, which calls the
TargetableCommand. performExecute
method.

4. If the hasOutputProperties method
returns true and the returned
command is not the same instance
as this command, it calls the
setOutputProperties method so that
the results will be copied into
this command.

* setCommandTarget: This sets the
commandTarget instance variable.

+ getCommandTarget: This returns the
commandTarget instance variable.

+ setCommandTargetName: This sets the

commandTargetName instance variable.

+ getCommandTargetName: This returns the

commandTargetName instance variable.

the command writer to implement the follow-
ing methods:

+ performExecute

* reset

* isReadyToCallExecute

As an example, a simple command might

look like:

Sample code

The HelloWorldCommand class shown
above is available along with a reference

: www.developer.ibm.com/devcon/.
: The sample includes reference implementa-
* tions of local, RMI and EJB command targets.
Also included is a “QuickStart” client / server
. example. QuickStartServer simply registers an
¢ RMI command receiver. Run the server first

¢ with “java QuickStartServer.”

: After the server has started, run the client
¢ with “java QuickStartClient.” The

* QuickStartCli i C :
; Suibieked Heattwill sour el BWoHComimand : completing a B.S. in Computer Engineering at

: the University of Illinois, Urbana-Champaign.
: Matthew has written a prototype EJB container
. and developed database logic for at least six

¢ first locally and then remotely in the
e TaxpetableCommandlmpl cass expocts QuickStartServer. The local command target is

. useful for early testing. As seen in the sample
¢ code, it is straightforward to alter the client to

application evolves.

Conclusion

This article demonstrates how commands

: can be used to partition an application into effi-

implementation of the Command Framework at cient units of client-server interaction.

the Developer Connection Web site at

In the Command Framework, client code
is independent of the style of the command’s

implementation and independent of where
the command is physically executed. This

: makes it ideal for heterogeneous environ-

: ments — for example, when the WebSphere
Application Server interfaces with other
applications, such as Domino or DB2. In fact,
the Command Framework is under develop-

: ment for use with the WebSphere Application
: Server, although its potential also can be

¢ realized in other environments.

George Copeland is currently a Senior

¢ Technical Staff Member at IBM Austin. He

: received his B.S. degree from Christian Brothers
College and his M.E. and Ph.D. degrees from
the University of Florida. He was chief architect
: of the DB2 UDB, a primary architect of

: Enterprise JavaBeans and helped the

* Net.Commerce product move to Java. He cur-
rently works in the area of caching dynamic
content in Web applications. You can contact

: him at copeland@austin.ibm.com.

: Matthew McClain joined the IBM Software
: Group Technology Center in June 1997, after

: . . . different Web applications. Matthew's most
: use different command targets as the e-business : iff . PP .
: recent work includes creating a cache for

: Commands and JSPs. He can be reached at

+ mmeclain@austin.ibm.com.

Jim Hsu is a Software Engineer, who joined

¢ IBM in May 1997. He is a member of the
Software Group Technology Center in Austin,

: Texas. Jim received his bachelor’s and master’s
degrees in electrical engineering and computer

: science from MIT. He is interested in technolo-

: gies with immediate widespread impact and has
: worked on the development of Java programs

* that involve the Internet. You can contact him

i at jimhsu@us.ibm.com.

The authors would like to thank Michael

4 Conner for the initial command concept. Steven
: Halter, Erik Vodal and Mark Hubbard also

: made significant contributions to the Command
: Framework design. Figure 1 was borrowed from
the “Understanding Technology Choices™ which
: can be viewed online at www.ibm.com/software/
: ebusiness/buildapps/understand.html. This doc-
: ument provides more details about the IBM
Application Framework for e-business.

5

www.developer.ibm.com/ devcon/

Building Database Servlets with

by Morgan Kinne

“'ne of the most

common activities per-

formed by a dynamic
Web site is the cre-
ation, maintenance,
query and display of data in SQL databases.
IBM WebSphere Studio makes it easy to build
these dynamic elements of your Web site
through the use of its SQL Wizard and
Database Wizard. These wizards generate SQL
statements, HTML pages, Java Server Pages
(JSP), Java servlets and Java Beans that can
insert, update and delete data in your existing
Java-enabled databases such as IBM’s DB2
Universal Database. This article describes how
to build a servlet that updates an employee
record in the DB2 sample database.

What is WebSphere Studio?
IBM WebSphere Studio 3.0 is a develop-

ment tool for creating, managing and debug-

ging Web applications that can be executed on

IBM WebSphere Application Server.

WebSphere Studio 3.0 supports both

WebSphere Application Server 2.x and 3.0 and

includes a development copy of WebSphere

Application Server 3.0 Standard Edition for

testing your Web applications. Studio provides

a workbench that allows development teams to

organize, manage and publish their projects.

The workbench automatically corrects links as

pages are moved to different folders within a

project. Additional components that are inte-

grated with the workbench are:

* A WYSIWYG page designer that supports
both JSP and HTML..

* A WYSIWYG applet designer for creating
Java applets to be included in your Web
pages.

* A Web art designer for creating banners
and other graphics to be included in your
pages.)

* A remote debugger that eases debugging of
your Java servlets, beans and JSP pages.

* Wizards for building dynamic interactive
pages.

seeses

cesssesssssssssnas

cesscsesscssscnanse

cesessnas

teessssessnans

Studio also provides tight integration with,
and a complimentary copy of, IBM VisualAge
for Java Professional Edition 3.0. A compli-
mentary copy of WebSphere Studio 3.0 Entry
Edition can be downloaded from the Studio
home page at http://www-4.ibm.com/
software/webservers/studio/index.html. Note:
Both products also are available from the
Developer Connection. VisualAge for Java
Professional Edition can be downloaded from
the online catalog at the Advanced Level.
WebSphere Studio 3.0 Entry Edition is avail-
able at the Guest Level.

Configuring your system

The Studio SQL Wizard and the generated
Java Beans both use the Java Database
Connectivity 1.0 API (JDBC) to access relation-
al databases. Therefore, the JDBC database dri-
vers for your vendor’s database must be avail-
able in the system’s classpath environment vari-
able for Studio and in the classpath variable in
d:\WebSphere\AppServer\bin\admin.config for
the Application Server. The vendor’s JDBC
database drivers are normally installed along
with the database client. In the case of DB2
these drivers are normally found in
d:\sqllib\java\db2java.zip. Failure to add these
drivers to the appropriate classpaths is the most
common error when beginning to use Studio.

Of course the database server must also be
installed somewhere on your network. Figure 1
shows a typical network configuration of the
necessary elements when building database

servlets. These products also could be installed

WebSphere Studio 3.0
is a development tool for
creating, managing and
debugging Web

applications.

ceee tesscsssssssssssssssssesssssnsnn .o

sessscsssssssssnsns

“essssssssssense

on a single machine, which is an excellent con-
figuration for the development and test cycle.

Creating a Studio project

New projects can be created in Studio
through its File menu. You must decide on
which version of WebSphere Application Server
you will deploy your new project. The Advanced
page of the Project Properties dialog is where
you make these selections. Figure 2 shows the
dialog as it is configured for this project.

There are various factors that enter into
this decision. Servlets that are built for
Application Server 2.x also execute successful-
ly on Application Server 3.0. However, the
generated Java Beans use the Application
Server 2.x Connection Manager APls that have
been deprecated (although they are still func-
tional) on Application Server V3.0 instead of
the new Connection Pooling APls. You also
will be unable to exploit JSP 1.0 when gener-
ating for Application Server Version 2.x.
However, if you have servers running various
levels of Application Server then selecting
Application Server Version 2.x is the most
flexible choice because you can deploy your
projects on any of your servers.

Regardless of your server selection, select
JSP .91 for this project. Projects that use JSP
1.0 must be published differently than what is
described in this article. If you are interested
in exploring how JSP 1.0 projects are pub-
lished, review the paper at http://www-
4.ibm.com/software/webservers/studio/doc/art
icles/publish301.html.

Using the SQL Wizard
The SQL Wizard is launched from the

Tools menu in Studio. The wizard requires
that you log on to a database. The database
URL field identifies the database to be used.
We will update a record in the STAFF table in
the DB2 SAMPLE database for this example
and the URL is jdbc:db2:sample. DB2 offers a
choice of connectivity options. Choosing the
DB2 local (or .app) driver yields the best per-
formance in a server-side environment. Of
course a valid userid and password must be
provided. Click the Connect button when you
have completed the fields on the page.

Figure 1. A typical network configuration
for database servlets

StudioArticle Propertie

Figure 2. The project’s properties dialog

When you have successfully connected to
the database, the wizard shows the tables you

in your SQL statement here as well as the type : ; - .
y 0 P . only one .sql file so no action is required on this

page. Click the Next button.

of SQL statement you will build. There are
two steps in the process of updating data.
First, you must query the database to obtain
the existing data through a Select statement
and then later update the data using an SQL
Update statement. We'll just build a Select
statement here and later the Database Wizard

cally. The trick is to make sure you access
ment returns only one record. Select the

STAFF table on the Tables page of the SQL
Wizard. Figure 3 shows the completed page.

: choose which pages the wizard should gener-

: and associated pages to execute the SQL state-

: this option causes the wizard to generate a sec-
only one table and that your SQL Select state- : o clog
. ond servlet, bean and associated pages that

updates the database after the user makes
: changes in the data from the original query.

The Join Page is of no interest in
this example because we are work-
ing with only one table. Also, by not
selecting any specific columns on
the Columns page, the query returns
all the columns in the table.

The Condition page allows you
to specify a parameter for the query
that will select an individual row in
the database. You normally will pro-
vide a condition on a key field to
select a particular record but there
is no requirement that you use a
key field. Select the ID column and
the “is exactly equal to” operator
and then click the Parameter but-
ton. Type id in the popup dialog
and then click OK. Figure 4 shows
the completed Condition page.

You can see the SQL statement
that was built on the wizard’s SQL
page. Click the Finish button to
save the .sql file containing the
choices you made when building

the query.
Using the Database Wizard

The next step in building our
project is to use the Database
Wizard to construct the servlets,
beans and pages that will actually
do the update operation based on
the information in the .sql file.
Studio uses two separate wizards in
the anticipation that different peo-
ple with different skill sets perform
these tasks.

Launch the Database Wizard
from the Studio Tools menu. The
drop-down list allows you to select

the .sql file to use. The SQL statement for the

. selected file is visible in th i to aid
are allowed to access. Choose the tables to use : ,Se ciaced . % S YRR pr(.*wew.area . ‘u. :
: in selecting the proper file. This project contains :

: locks on the database. Holding locks is proba-

The Web Pages Window allows you to

¢ ate. The wizard always generates a servlet, bean) v
: locks, the wizard generates hidden fields in the

¥ SOL Wizard - d:\

tudio\check

KINNEM.EMP_RESUME

] KINNEM.IN_TRAY

| KINNEM.ORG
KINNEM.PROJECT

| KINNEM SALES

Figure 3. The completed Tables page

|

lis greater than or equal to (»=)
less than (<)

is less than or equal to (<=)

is between

Figure 4. The completed Condition page

The generated code does not hold any

. bly not wise in Internet applications but if you
: wish to do so, explore using VisualAge for Java
¢ to build Enterprise Java Beans (EJB) for your

database update operations. Instead of holding

. ment, in this case a Select statement. The Allow JSP page that shows the results of the query.

builds the Update statement for you automati- : Cpriate; ook boxin ena}bled becanner s .SQL
: statement references a single table. Checking

. These hidden fields hold the original data that
¢ was returned by the query and is used in the

: update operation to find the original database

: record. The Run as Transaction check box

¢ causes the wizard to generate an explicit JDBC
commit in the bean as opposed to using JDBC

CONTINUED ON PAGE 8

out\StudioArticle\artwork \Update... [

WW \\'.(l(*\'(‘l()pvr.i|)m.(*()m/(l('\’('()n/

CONTINUED FROM PAGE 7

A7 A

query are preselected for you.
Keep clicking the Next
button until you reach the
Successful Update page. This
page allows you to choose

the Uncheck All button and
then check the
numAffectedRows property.
This property has a value of 1
when the update is successful
and a value of either 0 or -1
for an unsuccessful update.

ton until you get to the Finish
Page. The Finish page shows

by the wizard. You may want

Figure 6. The Studio workbench

autocommit. If the explicit commit fails, the
servlet presents the user with a generated
transaction failure page that you can tailor
using the Studio Page Designer. Not all data-
bases support explicit commits but you should
use them wherever possible. Of course DB2
does support this, so you should select all the
check boxes on this page and click the Next
button. Figure 5 shows the completed page.

The Input page shows the pre-checked
parameter for the Select statement. If you
choose, you also can have the user specify a
userid and password that is used to connect to :
the database instead of obtaining it from the :
servlet file it will generate. Leave the id para-
meter checked and click Next.

The Results Page allows you to choose
what data from the query is actually shown to
the user. All the columns returned from the

8

the project

=hlls i to click the Rename button to
S : @ [Tet . .
B atwok 5@ hip/ocahost ive your files a meanin
g senviel B atwok : ey fi gful
W 5 4Q Sudonice B st ~ name. Go ahead and click the
r 3“""5"'5 s 'y g E_W -~ button and change the prefix
- gmﬂ g W’"’ = from Queryl to UpdateStaff.
) UpdateStaiDBBeaniava -] UpdateStafNoDataisp = Use uppercase characters as
. .}y UpdateStafiUpdate. |, &1 UpdateStaffResuts.isp = 3
aw‘: i :Wm-, 5 the first character in a prefix to :
£ gms sl *'W’f" _ % conform with Java naming
| P UpdateStafiUpdateDBBean jova _ conventions. Click the Finish
~ B UpdieStallag button when you’re done.
[g UpdateStafirgut bl Figure 6 shows the generated
s A VoSO by files that the wizard added to
.] UpdateStaffResubs.isp
UpdateStaffUpdateE ox isp the Studio workbench.
— UpdateStaffUpdateResults jsp
i SR Publishing and testing

ject, you must define your pub- :
: lishing targets. Select the server :
: in the right pane and open its properties dialog
¢ from its pop-up menu. If you are publishing to
a server on the same machine, you can use a :
. file system publish option; otherwise use the
¢ File Transfer Protocol (FTP) publish option.
¢ You specify the actual targets by clicking the
: Define Publishing Targets button. Regardless
of the publish option you use, select your Web
. server’s document root directory for your :
: HTML publishing target. Your servlets normal- :
¢ ly are published to your Application Server’s :
servlets subdirectory.

You can test your project after publishing

. by selecting the UpdateStafflnput.html file in
: the Studio workbench and then selecting

¢ Preview from its pop-up menu. Then, the ini-
¢ tial input page of the project opens in your
Web browser. Try using a value of 90 for the
. id and changing the number of years the

what information the user sees :
after a successful update. Click

: employee has been with the company. The

* first time you run the servlets it will take some
: time to complete the first query because the
JSP pages need to be compiled. Subsequent

. accesses should be much faster. Rerun the

pages from the beginning, the number of years
in the initial output page is displayed.
Conclusion
The Studio Wizards provide a useful start-

ing point for building Web applications that
can make your legacy data available to users
. of your Web site. The same users can be
. allowed to update appropriate data such as
. . user profiles, preferences and other useful
Keop clicking thie Next but- inforzlation. Ifl)owever, the wizards are only a
starting point. After the basic pages have been
v s il think uve gencrabod built, you might want the graphic artists and

: content providers on your team to further
. enhance the generated pages using the other
* tools in Studio, and in particular the Page
Designer, to make these pages both useful and

. attractive parts of your Web site.

: Morgan Kinne is an Advisory Programmer

: and a team leader on the WebSphere Studio
. development team responsible for database

: access and code generation aspects of the

: product. Morgan received his BA degree in
Computer Science from SUNY Potsdam

i (1974) and joined IBM immediately after-
wards. Since then, he has worked in many

: divisions with his focus in recent years on

SR S —— Java and Web technologies.

Designing an architecture

fJor a Data Warehouse
Populating System

by Scott Howard

T;e article is a fol-

low-on to “Building
the Data Warehouse”
published in the
December 1998 issue
’ of the Developer Connection Technical

’ Magazine. It continues the discussion begun in
that article by providing the specifics of a
customizable data warehouse (DW) populating
system architecture. Using the framework and
disciplines of this approach, customers can
weave in a diverse confederation of packaged

/ tools and customized modules to create a con-
sistent, enterprise class DW populating system.
This system would be responsible for all
aspects of the DW Extract, Transform and
Load (ETL) processes including cleansing,
transformation and volume data movement.

Overview

The most critical technical success factor
related to a data warehouse’s initial implemen-
tation and to its ongoing operational vitality is
the success of the warehouse’s populating sys-
tem. The populating system is not only respon-
sible for moving data into and throughout a
data warehouse but also for physically enabling
the warehouse data model, maintaining data
integrity with respect to the business’ process
model, satisfying user latency requirements and
integrating with the warehouse metadata model.

Enterprise class data warehouse populating
systems are often a combination of many off-
the-shelf tools and custom programs. These
separate implementations can lead to a man-
agement nightmare unless implemented under
a consistent, well-defined integration architec-
ture. Tool vendors often use simple extract,
transform and load (ETL) architectures to
model the function provided by their tools. The
many functions required and provided by these
populating systems cannot be adequately repre-
sented by ETL alone. A more granular archi-
tecture is required to ensure that this combina-
tion of populating system components can be
operated and managed as a single entity. This

cesscee

cessens

Secsssessesstsssssssssasnns

sessesssnns

sesccnsnse

more granular architecture also can be

used to assess a tool or custom approach’s

implementation and adequacy in address-

ing a warehouse’s unique populating needs.
The management nightmare

Unfortunately, the last DW physical ele-
ment that the warehouse implementor
builds is the populating system. This final
build occurs only after the DW require-
ments have been gathered, data models
materialized and validated, and decision
support tools prototyped and adopted. It
also is the phase that is most subject to
technical problems, due to its many interre-
lated responsibilities. Any business intelli-
gence practitioner is quick to point out that,
on average, 80 percent of the cost of building
and maintaining an enterprise class data ware-
house usually relates to the populating system.
If all of this is true, then why isn’t more atten-
tion focused on the Data Warehouse Populating
System? Again the experienced practitioner will
tell you that it eventually is, usually resulting in
an expensive DW re-evaluation.

Many decision support tools, including
today’s modern (OLAP) tools, provide some
sort of population or materialization process.
These are fine for the dependent data marts
that we explored in my previous article
“Building the Data Warehouse™ published in
the December 1998 issue of the Developer

Connection Technical Magazine. There also are :

many easy-to-implemcnt extract, transform and

80 percent
of the cost of building

and maintaining an enterprise
class data warehouse usually
relates to the populating

system.

Da
sourc

Figure 1. Support Components

load (ETL) tools on which implementors rely
to provide robust populating processes. Most of
these tools also offer control point facilities that
can be used to control the many ETL processes
from a single interface. However, few single
tools can do it all. Unless your ETL tool can
offer integrated control of all internal and
external (non-tool initiated) ETL function, it
becomes just another requirement for total
integration. Implementing too many tools can

. lead to a management nightmare requiring

seessssscscsssans

sesssessnsannans

cesesans

staffs of professionals to ensure that the many
populating processes function as designed and
produce the desired DW results.

Robust and manageable

Before you implement, you must develop an
architecture to avoid the management night-
mare. If you choose a tools-based approach, you
should ensure that the various tools used for
your Populating System’s components can be
integrated in a complementary fashion, maxi-
mizing reuse and forming a single, manageable
solution. You should first define the parameters
for the Populating System that will exist
throughout your warehouse.

Figure 1 illustrates the multi-tier, enterprise

. class DW architecture advocated by many DW

practitioners. Note that there is one and only
one Populating System responsible for consoli-
dating data from the operational and classified
data sources. This single Populating System
actually may be comprised of many tools, prod-
ucts and customer routines, but must be treated

CONTINUED ON PAGE 10

\\"W\\'.(l(‘\‘(‘I()p(‘r.il)m.('()m/(l(‘\’(‘()n/

CONTINUED FROM PAGE 9

and managed as a single logical entity. This
requires a discipline and a further refined
architecture that we’ll discuss shortly.

Figure 1 also illustrates a DW populating

component called “Pipes” for lack of a better :
: integrity (RI) implemented in

term. These are actually Data Mart
Populating Systems. These too require
unique architectures.

The Central Warehouse
Populating System

Warehouse Populating System. I risk overstat-
ing this but it is important. Should multiple

often are, they need to be arranged to form a
common integrated solution. Suppose you had
12 different data sources from which you feed
your central warehouse — a small number by
most enterprise standards. That number of

ing processes. Some tools can integrate many
data sources but, as stated earlier, no tool can
do it all or satisfy all of your populating
requirements. In either case, you need to

these independent tools and routines.
Data Warehouse and Populating System

ple representation of the traditional extract,
transform and load architecture. Notice the
common file format advocated between each
of the major architectural components.
Keeping data in a standard, common format
ensures maximum reuse of existing tools and
utilities. For example, if a standard sequential
format is chosen, the many utilities that oper-
ate on sequential files can be integrated into
your Populating System enhancing existing
tool capabilities.

bilities including accommodating one-to-many
and many-to-one mappings, possibly consoli-

also might need to reconcile or reallocate nat-
change operations and properly representing

model. That was all just technical jargon for
accommodating corporate and, thus, system

forms vendor tools and products, fixing prob-
lems introduced by source system key reuse
over time and handling situations where the
history of a modeled item is not contiguous.
Many other intricate complexities need to

10

¢ be addressed by the Populating
¢ System. The Populating System
also is responsible for remodel-
. ing the business logic repre-

your source operational appli-
cations. You may ask, why

. don’t you just implement Rl in
. the Central Data Warehouse?

¢ The Populating System cannot

There should be one, and only one, Central :
: guarantee that dependent chil-

tools and custom approaches be used, and they their parents. These timing

¢ anomalies would result in

: integrity orphans and, thus, RI
* violations. Your CDW database
would be in a constant check

. pending state; that’s unaccept-
sources could require 12 independent populat- able. You'll need to design a

: mechanism for key reallocation
* and reconciliation under the
auspices of the Populating

. System, or design complex tim-
¢ ing dependencies and verifica-

establish an architecture that is the glue for all : * S
: tions. Other intricacies include

sented by the referential

. dren records will arrive before

The architecture that we begin with in our : support for populating cycle

. backout in the event of source system point-
courses is illustrated in Figure 2. This is a sim- : m-t)me. recovery and the need to address
+ VLDB issues.

As you can see, the responsibilities of the

Populating System are many and complex

¢ and too difficult to adequately model com-

: pletely using the simple ETL architecture. In
* our “Populating the Data Warehouse™ work-
shop, students discover six additional layers
that can be added to the ETL model to help
¢ address these complexities while still provid-
. ing an architecture that ensures maximum

¢ reuse and manageability. These layers are

The Populating System has many responsi- illustrated in Figure 3.

The first layer is extract, responsible for

. efficiently reading data from the source files

dating them from heterogeneous sources. They @ " database e non-dlsruPtlve e T.hls
: extract layer is frequently implemented using
ural source keys, while recognizing source data : proprietary vendor supplied tools or utilities.
: The next layer, pre-format is responsible for
those operations within a warehouse’s life span converting the proprietary extracted data into :
. the standard common file format, if necessary.

. Filter is responsible for eliminating undesired bypass some of the illustrated layers. For
mergers, consolidating data from multiple plat- records, while intelligent merge is intended to
* handle many-to-one source to target map-

¢ pings. Delta is responsible for detecting

¢ changed data and eliminating unchanged

. records. Cleaning handles all data cleansing

: re-engineering. Transform is the Populating

= Nine base ETL service layers

Figure 3. Populating subsystem — Logical architecture

System workhorse responsible for data deriva-
: tions and conversions. It is where the source-
: to-target mappings are implemented. Build

* creates load input for whatever tool or utility
¢ will be used by Load to efficiently load data
quickly and in a non-disruptive fashion.

What about my tools?
In our “Populating the Data Warehouse”

workshop students spend four days evaluating
¢ and exploring these additional layers in addi-
: tion to mapping these layers onto some of
today's most popular ETL tools. I can’t dupli-
* cate that in this article, but if I've stirred your
interest on this topic, I've done my job; call it
. evangelism. You will most likely employ a set
* of tools to perform your populating system’s

* needs. You should ensure that these tools
integrate into an architecture like the one
illustrated in Figure 3. This allows maximum
. reuse, simpler management and thus a more

¢ economical and efficient implementation.

Your chosen ETL tools may reorder or

example, some tools perform snapshot

. extracts. These extracts are not usable for

: temporal warehouse needs because they do

: not guarantee complete transactional capture
integrity and the changes that occur between
¢ tasks including scrubbing, format changes and : snapshots would be missed. However, these
: snapshot tools provide fast batch type func-

Figure 2. DW Populating Subsystem Reference Architecture ‘

tion. Our delta layer provides a mechanism for :

| detecting changed data and thus only trans-
forming and loading these changes. Should
you choose a replication tool that provides full
transactional capture capabilities, like IBM’s
Data Propagator technology, then the delta

i layer becomes irrelevant because Data

Propagator’s capture component, by defini-

tion, is a delta layer. The delta layer must

illustrates. The delta layer has been reordered
in this example. Many other variation possibil-
ities exist depending on the specific tool cho-

sen and must be documented in the PS archi-

tectural solution.
Pipes

Pipes tend to be simpler to implement than

the one central warehouse populating system
because they generally don’t deal with hetero-

’ geneous source, but rather one central DW
source. Data in the central warehouse should
already be clean, so that’s usually not an issue.
Time and other dimensional data already has
been infused into the central warehouse and
just needs to be replicated to the data marts. In
fact, one of the toughest tasks of the pipe is
remapping data from a normalized CDW struc-

Populating the Data
Warehouse workshop

then be bypassed for this type of tool solution. :
You also should realize that the delta function *
is actually performed far sooner than Figure 3

.

ture to a denormalized star schema usually

: prevalent in multi-dimentional data marts. This

is still not a trivial task but can often be per-
formed by built-in processes provided with
most data mart tool suites or multi-dimentional
or OLAP engines.

Pipes tend to be more sensitive to service
levels needed to ensure maximum availability
of the data mart. Decisions need to be made
about using batch type populating techniques
as opposed to the alternative trickle load meth-

ods. Redundant data mart materialization com- :

. bined with access switching mechanisms can

also ensure 24-hour, seven-day-per-week

availability, if required.

Conclusion

be considered one of the most important and
critical phases of warehouse construction.
Ultimate Business Intelligent solution success
depends on the populating system effectively
and efficiently performing the nine layered
functions illustrated in Figure 3. Designing your
populating systems following our nine layers can
ensure maximum flexibility, consistency and
simpler management. Consider seeking help
from experienced BI practitioners or seek train-
ing specializing in populating system architec-

. ture and construction.

There are plenty of technical issues that I
plan to address in future articles. Watch for dis-
cussions on natural key reallocation and recon-
ciliation, continuous transaction capture vs.
snapshots, trickle feed versus batch approaches
and techniques to map source system updates
and deletions into data warehouse inserts to
preserve complete histories.

Scott Howard has been with IBM for over 20
years. His experiences include staff and manage-
ment assignments ranging from micro applica-
tion programming to mainframe systems pro-
gramming. He is an internationally recognized
expert on business intelligence, data warehous-

ing, DRDA, distributed databases and multi-ven-

Building warehouse populating systems must : dor database implementations and a contributor

to many publications. Scott is an IBM Certified
Advanced Technical Expert for DB2 UDB, an
IBM Certified Business Intelligence Specialist
and Certified Technical Trainer. Scott is current-
ly with IBM Learning Services and is its
Business Intelligence and Data Warehouse
Curricula worldwide leader. He has worked with
the Santa Teresa, Toronto, Rochester and Austin

: IBM development labs for the past 12 years

: developing client/server database and business

intelligence courses. Scott can be contacted at

scottho@us.ibm.com.

Classified data sources

SCOTT HAS DESIGNED AND DEVELOPED MANY BUSINESS
INTELLIGENCE AND DATA WAREHOUSING WORKSHOPS FOR
IBM LEARNING SERVICES. THIS ARTICLE IS BASED ON IBM
COURSE DW13, PopPuLATING THE DATA WAREHOUSE.
ARCHITECTING DATA WAREHOUSE POPULATING SYSTEMS IS
ONLY ONE FACET OF THE COURSE. PRACTICAL METHODS AND
TECHNIQUES FOR ACQUIRING, TRANSFORMING AND POPULAT-
ING AND A REPRESENTATIVE LOOK AT SEVERAL POPULAR IBM
AND NON-IBM ETL TOOLS ALSO ARE COVERED. ALL GENER-
iIc IBM DATA WAREHOUSE AND BUSINESS INTELLIGENCE
OFFERINGS, SUCH AS DW13, ARE PRODUCT INDEPENDENT
AND BASED ON THE BEST PRACTICES AND COMBINED EXPERI-
ENCES OF IBM GLOBAL SERVICES WORLDWIDE.

GO TO HTTP://WWW-3.I1BM.COM/SERVICES/LEARNING/, AND
THEN SELECT YOUR COUNTRY FOR DETAILED DESCRIPTIONS
AND SCHEDULES.

CLASSIFIED DATA SOURCES REFER TO THE DATA THAT YOU ADD
TO YOUR OWN OPERATIONAL DATA, ADDING ANALYTICAL VALUE
TO YOUR WAREHOUSE. YOUR OPERATIONAL DATA SOURCES
PROVIDE VALUABLE INFORMATION ABOUT THE VITALITY OF
YOUR BUSINESS BUT DO LITTLE TO TRACK THE VITALITY OF
YOUR COMPETITORS. HOWEVER, INFORMATION ABOUT YOUR
COMPETITORS CAN BE PURCHASED FROM THIRD PARTIES,
SUCH AS INDUSTRY WATCHDOGS. SEARCHING FOR THESE
SOURCES OF EXTERNAL DATA IS LIKE SEARCHING THE CLAS-
SIFIED SECTION OF YOUR NEWSPAPER, THUS THE MONIKER
“CLASSIFIED SOURCES.” DATA FROM THESE CLASSIFIED
SOURCES ALLOW THE BUSINESS PROFESSIONAL TO ANALYZE
INTERNAL CORPORATE DATA IN PERSPECTIVE WITH THAT OF
THE ENTIRE RELATED INDUSTRY. THIS ENHANCEMENT TO TRA-
DITIONAL CORPORATE DATA, IN ADDITION TO A COMPLETE TEM-
PORAL TRANSACTIONAL HISTORY, REPRESENTS THE MAJOR
JUSTIFICATION FOR A DATA WAREHOUSE.

www.d evclopo r.ibm.com/devcon/

Installing the team repository server tor

| by Susan Yeshin : If you receive a response from the server, EMSRYV user (joe) from the list. Click
| . you're ready to choose and authorize the Add. Click OK to close all of the open
: EMSRYV user. dialog boxes.
(‘Cifling where and Authorizing the EMSRV user . 8. Reboot the machine.
how to install the team :

When you start the server, you must pro- User ‘joe” now has the Windows NT oper-

sesssens

repository server
(EMSRYV) on a

Windows NT server

vide the name and password of a user under ating system privileges needed to start the

: whose authority the EMSRV program will run. : repository server.

This user is referred to as the EMSRYV user. : After EMSRYV is installed and the EMSRV
: The EMSRYV user is the only person who has
: the authority to start and stop the server. : EMSRYV should start. You can start EMSRV

n cause major he: »s bec: ' the : . ;
can .ca ajor headaches because of the user is authorized, you need to consider how

many possible configurations. Breaking down

the options by asking yourself the following from a command line, adding the parameters

To authorize the EMSRYV user to start the

uestions can help you choose the configura- . i . : . 7
q i g repository server, do the following: . as necessary, or you can install EMSRV as a |

tion that works for your situation: 1. On the server, log onto Windows NT as an : Windows NT service that starts automatically

. Whe we n? s . =
Who will start the server? on startup. (You also can install EMSRYV as a

Administrator.

2. From the Start menu, select Programs —

mand line or as a Windows NT service?

service that starts manually, but that option is
: not discussed in this article.)

* Should the server be started from a com- :

) i L) Administrative Tools (Common) — User s
: Whaf kg;d of password validation, if any, is : Manager. The User Manager dialog box Installing EMSRV as a service
required? . : . .
'q) opens. : There are two advantages to installing
) Aﬂ.” you ::anlzfnS\.Ner the’s‘e 'questlons. : 3. If desired, create a new user to be the : EMSRYV as a service:
mst;al!mg EMbR: ;: s'mf')lp' This docur;:em : EMSRYV user, such as ‘joe’. : * You can specify automatic startup so that
explains some ol the options you can choose 7 g y o
i P. alli - rt'p F\/I.SRV) 4. Select User Rights from the Policies menu. : EMSRYV starts whenever the repository
or installing and starting E] and pro- : . . . * ' :
- gt' ; g i Wh P : The User Rights Policy dialog box opens. : server is rebooted.
vides instructions for using them. When you) s y 7 5
;i - .5 + the Show e or B3 C. ou can specify the default settings that
understand the options, follow the decision : 5. Select the Show Advanced User Rights : : E‘MSRV ‘ P © |
: ool . sdis : ou want EV o use. For example, you
tree that leads to the steps you need to take : ol Jicox € thes eotinns ol the dislag Bas,. ¢ y it ¢4 v that :) l:d
) i , : g ke T might want to speci at password valida-
before and during installation. : and then click the down arrow to see the : ' g ; pecily p
: Right list. : tion is always enabled.
Install:ng EMS.‘RV : 6. Select Act as part of the operating system To install EMSRV as a service, follow
In all C?Sesﬂlh? first step is to copy the from the list and click OK. The Grant To : these steps:
nect?ssary t.lles from the server CD to the prop- pane lists the users who currently have : 1. Change to the directory where the EMSRV
er directories. . - : this privilege. Click Add. The Add Users i executable program is installed and issue
: I(:‘ollowhth?s;‘I steps tohmsla;li H\fISR\ :h : and Groups dialog box opens. : the command
. Copy the following three files from the : . “ ¢ ..
Py CD to a di 2 ; % . 7. Click Show Users. Scroll down the list of
server o a directory on the server: : ;) .
) ’ users in the Names pane and select the :
+ EMSRV.exe : : The first parameter must be

* emadmin.exe

+ emsrvmsg.dll

2. Copy the ivj.dat repository file from the Decldmg Where the others are the EMSRV startup parame-

sessssssnnnns

server CD to the server directory where and how to install EMSRV can he BE ters that you have chosen for your envi-

ronment. Here is an example:

you plan to store shared source code

challenging...these configuration J
ms_tructlon_s can SImphfy EMSRV This example installs EMSRV as a service
installation and help ensure

repositories. This directory should be spec-
ified as the EMSRV working directory,
using the -W EMSRV startup parameter,

rw BT bl

sesessanranse

when you start the server later.

3. Verify that TCP/IP is installed and cor-
rectly bound to a LAN adapter. You can
verify the binding by using the ping utility : s“ccessfl“.
to communicate with the server from a
workstation on the LAN. .

that your efforts are

sessesesansas

as the EMSRV user na

me and

Coi

12

as joe's password. By default, the EMSRV
working directory will be

A message will confirm that EMSRV has
been installed.

2. From the Windows NT Control Panel,
double-click Services. The Services dialog
box opens.

3. Select EMSRYV from the list of services. In
the Startup Parameters text box, type the
EMSRYV startup parameters that you want
to use. If you are specifying the working
directory for EMSRYV to use, you must type

an extra backslash for each backslash in the :

path. If you want your working directory to : team members’ user names and passwords can

: be maintained. This file is called passwd.dat.

be e:\teamproject\emsrv\working type
e:\\teamproject\\emsrv\\working

4. Click Start. A message appears, informing
you that EMSRYV is starting.

EMSRYV is now installed as a service in the
registry and the necessary DLLs have been
copied to the system directory. The parameters
that you provided will be used, by default,
whenever EMSRYV is started. You also can

EMSRV manually from the Services icon of the :

Windows NT Control Panel.
The next step is to decide what kind of

password validation you need in order to ensure ! Pasewords should niot be the users' network

that the code on the server is secure. When
password validation is enabled, team members
must provide valid passwords to connect to a
repository managed by that server. There are
three options for password validation:

* No password validation required.

*+ Native operating system accounts and pass-
words are used.

* Passwords are stored in a file on the server. :

If you decide not to enable password vali-

the Java source code on the server and can
make changes to that code.

Using native password validation

If you choose to use native operating

system password validation, team members
must enter their Windows NT logon user
names and passwords to connect to any
repository on that server.

To set up native password validation, do the :

following:

I Create a Windows NT user ID for each user : find out which configuration of EMSRYV best

. suits your needs. When you arrive at a num-

on the server.

2. In VisualAge for Java, add each user to the

repository list —

* In the User Administration dialog box
(Window > Repository Explorer >
Admin > Users), enter a unique
name and full name, and provide the
Windows NT ID as the Network
Login Name.

When you start EMSRV using the password

. validation option (-rn), users are prompted for
. their system passwords when they connect to a
. shared repository on the server.

Using a password validation file
As an alternative to using native operating
system passwords, a file containing a list of

The passwd.dat file resides in the EMSRV

working directory. There is one passwd.dat file :
: per server; that file is used for all shared

: repositories on the same server. The
passwd.dat file contains one entry per team
member, with one user name and password
per line. The user name is specified first, sepa- :
: rated from the password by a single space. :
: Here is an example:
override or add to these parameters if you start : etz ey

The passwd.dat file is not encrypted.

login passwords.

To set up a password validation file, do the

following:
¢ 1. Copy the sample password file, passwd.dat,

from the server CD to the same directory
where you copied ivj.dat.

2. Open the passwd.dat file in Notepad and

create an entry for each user in the pass-
wd.dat file on that server.

: 3. When this file is created, add each user to

dation, any VisualAge for Java client can access the repository user list in VisualAge for Java

(Window — Repository Explorer — Admin —
Users), providing each name from the pass-
wd.dat file as the Network Login Name in
the User Administration dialog box.

When you start EMSRV using the password

: validation option (-rn), users are prompted for
: the password when they connect to a shared
repository on the server.

The decision tree

Use the decision tree shown in Figure 1 to

: ber, follow the corresponding instructions for

Figure 1. Decision tree to select EMSRV configuratio

installing and starting EMSRV.

: Scenario 1: EMSRYV starts from the command

: line. No passwords required.

1. Copy the necessary files from the server
CD.

2. Authorize the EMSRV user (joe).

3. To start the server, change to the direc-
tory where the EMSRV executable pro-
gram is installed and type:

where the repository server is under the
authority of a user called joe and joe’s
password is donttell. The working direc-
tory where EMSRV will write its log and
where it will search for repositories is

. d:\javateam.

: Scenario 2: EMSRYV is added as a service. No

: passwords required.

1. Copy the required files from the server
CD.

2. Authorize the EMSRYV user (joe).

3. Change to the directory where the
EMSRYV executable program is installed
and type:

where the repository server is under
: the authority of a user called joe and
joe’s password is donttell. The working
directory where EMSRYV writes its log
and where it searches for repositories
is d:\javateam.
4. Reboot to start the server.
: Scenario 3: EMSRYV is added as a service.
Passwords are the Windows NT logon
. passwords.
1. Copy the required files from the

server CD.

CONTINUED ON PAGE 14

www.developer.ibm.com/ devcon/

CONTINUED FROM PAGE 13

2. Authorize the EMSRYV user.
3. Change to the directory where the

and where it searches for repositories is program is installed and type:
d:\javateam. :
. EMSRYV -u emsrvacc -p secret -W d:\javateam -rp

EMSRV executable program is . 5. Reboot to start the server.

installed and type: . Scenario 5: EMSRV starts from the command where the repository server is under

EMSRV -install -u joe -p donttell -W j:\javateam -rn ¢ line. Passwords are the Windows NT logon The’ authority 0? a user called joe and
! passwords : joe’s password is donttell. The work-

where the repository server is under
the authority of a user called joe and
joe’s password is donttell. The working
directory where EMSRYV writes its log
and where it searches for repositories is :
d:\javateam. :
4. Create the necessary accounts to

enable native password validation.

5. Reboot to start the server.

cessesssssssnas

Scenario 4: EMSRYV is added as a service. :

Passwords are stored in the passwd.dat file.

1. Copy the required files from the server CD.

2. Copy the passwd.dat file from the server
CD to a directory on your server.

3. Edit the passwd.dat file and add each
user to the repository user list.

4. Change to the directory where the
EMSRYV executable program is installed
and type:

EMSRYV -install -u joe -p donttell -W j:\javateam -rp

where the repository server is under .
the authority of a user called joe and :
joe’s password is donttell. The working
directory where EMSRV writes its log

1. Copy the required files from the server
CD.

: ing directory where EMSRV writes its
log and where it searches for reposi-
tories is d:\javateam.

2. Create the necessary accounts to enable :

native password validation.

3. To start the server, change to the
directory where the EMSRV executable
program is installed and type:

EMSRV -u emsrvacc -p secret -W d:\javateam -rn

where the repository server is under
the authority of a user called joe and
joe’s password is donttell. The working
directory where EMSRV writes its log
and where it searches for repositories is

d:\javateam.

Scenario 6: EMSRYV starts from the command
* line. Passwords are stored in the passwd.dat file.

1. Copy the required files from the server
CD.

2. Copy the passwd.dat file from the serv-
er CD to a directory on your server.

3. Edit the passwd.dat file and add each
user to the repository user list.

4. To start the server, change to the
directory where the EMSRV executable

Summary
Deciding where and how to install
: EMSRV on a Windows NT server can be a

: challenging and at times confusing task,

. especially given the large number of possi-

: ble configuration options. However, the con-
figuration instructions presented in this arti-
cle can simplify your EMSRYV installation
efforts and help ensure that your efforts are
ultimately successful.

cesssses

Susan Yeshin has been an information devel-

oper on the VisualAge for Java team for the

past two years. Currently, she writes online

help for various VisualAge for Java compo-
! e, p

cesssssvene

nents, including the IDE and Team
Programing. Questions about this article, can

be sent to Susan at syeshin@ca.ibm.com.

sescssccssccsccssssnnse

Get the e-business information
you need all year long.

THE IBM DeVELOPER CONNECTION WAS
CREATED TO HELP YOU POWER YOUR
SOLUTIONS — POWER THEM THROUGH
DEVELOPMENT, POWER THEM TO MARKET,
AND MAKE THEM POWERFUL WHEN THEY
ARRIVE. IN A SINGLE RESOURCE, THE
DevELOPER CONNECTION MERGES THE
TOOLS AND STRATEGIES THAT YOU NEED
TO GET UP AND RUNNING WITH THE LATEST
IBM TECHNOLOGIES. AND IT PROVIDES
CORE STRENGTHS YOU NEED TO MOVE
SOLUTIONS TO NEW PLATFORMS, RAPIDLY
ADOPT BREAKTHROUGH TECHNOLOGIES
AND SATISFY THE CHALLENGING DEMANDS
OF YOUR CUSTOMERS.

THe DEVELOPER CONNECTION IS THE SIN-
GLE MOST COMPREHENSIVE RESOURCE
AVAILABLE TO DEVELOPERS EXPLOITING
IBM TECHNOLOGIES. DEPENDING ON

YOUR LEVEL OF PARTICIPATION, YOUR SUB-
SCRIPTION TO THE DEVELOPER
CONNECTION PROVIDES:

« FAST, CONVENIENT, ONE-SOURCE
ACCESS TO MORE THAN 1,000 LEADING-
EDGE DEVELOPMENT TOOLS TO HELP YOU
BUILD SOLUTIONS ON 14 PLATFORMS;

« THE BACKING OF IBM’S E-BUSINESS
STRATEGIC INITIATIVE AND ONGOING SUP-
PORT IN SUCH HOT TECHNOLOGIES AND
PLATFORMS AS JAVA, XML, WEBSPHERE,
Linux AND WinDOWS NT;

« WEB ACCESS TO PRODUCTS, TOOLS,
TECHNICAL TIPS AND THE VERY LATEST
INSIGHTS AND INFORMATION FROM IBM;

« CD SETS GIVING YOU THE FLEXIBILITY
TO ACCESS THE DEVELOPER CONNECTION
INFORMATION IN THE WAY THAT'S RIGHT
FOR YOU; AND

« IBM DeveLoPpER CONNECTION
TecHNICAL MAGAZINE — A QUARTERLY
COLLECTION OF TECHNICAL ARTICLES,
NEWS BRIEFS AND “HEADS UP”’ PREVIEWS
OF THE LATEST TECHNOLOGY AND STRATE-
GIES FROM IBM.

COMMERCIAL MEMBERS OF
PARTNERWORLD FOR DEVELOPERS CAN
VIEW OR DOWNLOAD ALL CONTENT USING
THEIR MEMBER ID AND PASSWORD.
COMMERCIAL MEMBERS ALSO CAN RECEIVE
THE IBM DeveLoPER CoNnNECTION CDs
FOR JUST THE COST OF

MANUFACTURING, SHIP-

PING AND HANDLING.

™

e-business

DTDs in the

by Don Day

omeone recently
asked, “I create my
XML documents by

converting them from

clean legacy data. So,
as long as they are

well-formed and my tools are written to handle :

the tags that I know are in them, why do I
need to bother with Document Type
Definitions, or DTDs?”

If your documents mainly consist of mes-
sages between applications or between servers,
the right answer may be, “Don’t bother with

DTDs at all.” Many programmers write process-

ing applications that implicitly handle all
expected deviations within their data. In effect,
the program logic contains the “business rules”
for the structure of your XML documents. But
what if you could externalize those implicit

rules so that you could use them as the basis for
reconfiguring your tools, or so that others could

interchange data more reliably with you? That

principle of external declarations is what makes :

DTDs something you should know more about.
Why do | need a DTD?

DTDs are valuable to you because:

* DTDs specify your document model. A
“Document Type” simply describes which
elements are allowed and how they are
organized in an XML document, much like

a class in a Java program. A DTD can guide :

you as you develop new applications for

processing your documents. For example, if

you have an application development tool
for Java classes and other developers want
to modify their DB connectivity builder to
integrate with your tool, they can use the

DTD to determine the format requirements

and to ensure validity, rather than having

to interview you or try to read your source
code. As another example, you might con-
sult a DTD to ensure that you have devel-
oped all the required template rules for an
XSLT stylesheet used to process your XML
data. Finally, by using a DTD to manage

the document structure, you make it easy to

maintain your current and future document :

libraries. DTDs become schemas for setting

up the storage structures for the documents :

they manage. In these ways, a DTD, along
with explanatory documents about your
design intents, is valuable to the tools
developer and document owners.

DTDs enable you to validate document
content. Many XML documents are
machine-generated from structured legacy

data; as a result, you might expect the XML

output to be inherently well structured.
However, legacy formats are rarely “clean”
to start with; in many cases, the corre-

sponding XML-generated structures may be

illogical. For example, bold, italic phrases
in word processor documents may come
through conversion tools looking like
“<cite>Hello, world/CITE>,”
which fails the XML requirement for prop-
er nesting and for matching case in the tag
names. By validating documents against a
DTD, you can locate errors in migrated
content and correct either the legacy
markup or the conversion tools.
* A DTD helps to keep the data and your
processes consistent by:

— Enabling you to determine quickly
whether the document generators
are generating data that is struc-
tured as you expected

— Allowing the data generation and

processing functions to be developed :)
: get a good book about DTDs?” You wouldn’t

: expect to learn the craft from a specification,

DTDs can guide you
in the development of new
applicaions, validate document
content and assure that client-

side tools have fail-safe
data to process.

more independently with greater
assurance that the two will work
together when brought together

— Letting you test everything you can
in the incoming data — you can
introduce additional checks when
you need them for problem diagno-
sis in the production system

— Giving you an easy way to check
the validity of any test data you
must create

¢+ DTDs are required for editors that validate

XML. Many free or low-cost XML editors
attempt to check syntax but are unable to
prevent writers from inserting illogical struc-
tures or unallowed attribute values as they
draft their XML content. A validating editor
relies on a DTD to check structural context
at the insertion point. The editor then pro-
vides menus that show the elements allowed
at the insertion point. DTDs enable writers
to spend more time writing and less time
checking their tags. They provide value to
data owners, giving them assurance that the
documents are valid as saved.

* DTDs are useful for validation checking.

Validation helps assure that client-side tools
have fail-safe data to process. Valid data
should decrease the need for your applets
to perform error-checking and recovery.

How can | create a DTD?

Your first concern may be, “Where can [

¢ any more than you would expect an automotive
: parts catalog to help you build a car from

: scratch. If you are new to DTD designing, you
might want to work with someone who has had
some previous SGML or XML experience and

: consult a good book. A good book to start with
¢ (albeit with an SGML emphasis) is Developing
* SGML DTDs: From Text to Model to Markup,
by Eve Mahler and Jeanne El Andaloussi. More
specific to XML is Inside XML, DTDs: Scientific
¢ and Technical, by Simon St. Laurent.

If you are a programmer who prefers the

: school of raw experience, there is no better

way to learn the ins and outs of XML DTD

CONTINUED ON PAGE 16

15

www.(le\f(‘lopvr.il)m.(,'om/ devcon/

CONTINUED FROM PAGE 15

writing than by downloading a copy of the
XML 1.0 Recommendation
(http://www.w3.0rg/TR/1998/REC-xml-
19980210/) and reading about XML DTDs
from the syntax up. You still will need other
books to help with design strategies.

Let’s say you are more deductive...you
would like to analyze your documents before
you form your conclusions about the right
DTD. Several vendors offer tools that take
your source XML documents as input and
produce a DTD that represents the composite

structure of all the sample documents. You are

then free to modify the DTD to more closely
represent your larger body of documents. One
of the first tools to accomplish this analysis
was “Fred: The SGML, Grammar Builder”
from OCLC (http://www.oclc.org/fred/).
Another approach is to begin your design
work with a tool that interactively leads you
through the design process to create a DTD
that suits the document model you have in
mind. This might be an alternative if you have
no prior document structures to work from (or
if you just want to make a clean start on the
design for future documents). Tools in this cat-
egory typically have a visual design interface
that allows you to build a DTD progressively.

Design tools in this category include Near & Far

Designer (http://www.microstar.com), XML
Authority (http://www.extensibility.com/
products/xml_authority.htm) and IBM’s Visual
DTD (http://alphaWorks.ibm.com/).

Finally, let’s say you already have an
SGML DTD for your data and you want to

writing a DTD from scratch without the help
of tools. However, you will need some help
that the XML 1.0 Recommendation does not
provide. Browse for an article called
“Converting an SGML DTD to XML,” by

Norman Walsh at www.xml.com. That article

leads you through a case study of a conversion * ’ .
y & y !+ No’& (and) connector, which requires

and touches on all the syntax and alternative

approaches you might consider as you migrate :

an existing SGML DTD.
Having done all this design work, you

XML Generator (http://alphaworks.ibm.com/),
generates sample document instances that
conform to the design. You can use the
instances as test cases for processing tools.
This helps to create a tightly integrated pro-
cessing environment.

How do XML DTDs differ from SGML DTDs? :

A DTD is a “parser generator specification” .

16

: that sets up a syntax and vocabularies that sup- :
port parsing conforming classes of data. In
other words, it specifies the allowed structure
. and content for an XML document instance.

: You might think of a DTD as a map that rep-
. resents relationships within the data (useful in
* building tools that generate hypertext), as a

: fence that constrains how new documents
should be generated and as a filter for validat-
. ing the compliance of existing documents. :
XML DTDs and SGML DTDs both provide :

* these benefits. The main functional differ-

ences, then, are due to XML being seen more

! as a delivery language like HTML rather than
. an authoring language like SGML. Moreover,
¢ XML DTDs and documents are less complex;
correspondingly XML documents are much
easier to process and to write tools for.

So how are XML DTDs less functional or

expressive than SGML DTDs?

.+ No conref support required of the parser.

This is provided, instead, through XLink
and XSL, so no net loss. (Conref stands for
“content reference,” an attribute that
copies other content in place of an empty
start tag.)

+ No shortrefs, which basically allowed

SGML to be used as Grep processor for
weakly formed source (not an issue for

generated XML or XML managed by a

decent editor. XML parsing gives the infor-

mation processing community long sought
enforcement for well-formed content. So
this is also implicitly on the “good” list!)

) - y D No inclusions or exclusions in content
adapt it to XML form. This is less tedious than :

models. (This is unfortunate; XML is

dating editors. But authoring is not XML’s
primary domain; if it is generated from
SGML where the business rules ARE
applied, then you get the desired control
of delivered content.)

explicit sequences of elements. This has

been difficult for vendors to implement; few

tears have been shed over this limitation.

might want to test it. One particular tool, IBM’s 2 You can’t write a single declaration for a

set of elements that have the same content :

model; you have to repeat the declaration
for each element. (This was a shortcut in
SGML; in XML, you can assign the con-
tent model to a parameter entity and just
reference the entity for each element dec-
laration. Same maintenance benefit, dif-
ferent method.)

: DTDs?

Ditto for attributes. Same solution.

Attribute typing is more limited in XML.
(This should be rectified in the Schema
work by W3C, but vendor support in tools
will be months down the road.)

And what’s uniquely good about XML

Same syntax and design as SGML; there-
fore, they present a good opportunity for
you to reuse existing SGML skills.

Generally easier to parse and apply than
SGML shortrefs, ‘&” connector, omission
rules, etc.; therefore more vendors have

validating parsers.

No shortrefs. (See comments for this same
entry in the preceding list.)

They still allow use of parameter entities,
which is a bonus for managing DTDs.

XML is short for “Extensible Markup ‘
Language,” and extensibility means that \
you can create Web-based applications

that can merge content from other XML
providers. The World Wide Web

Consortium has defined a namespace rec-
ommendation for applications as a

roadmap for developing extensible applica-
tions. A namespace provides unique quali-
fication of elements whose structure and

content conforms to a particular DTD.

All the other good things about SGML

(XML rides on the shoulders of an enter-
prise-strength giant!)

What are the top ten stumbling blocks in

: constructing XML DTDs?
P 1.

weaker for enforcing business rules in vali-

Defining an element but not referencing it
in any content model -- in other words,
like having dead code in a program.

Defining attributes for content that might
be better cast as an element. Many early
SGML DTDs used attributes to contain
subtitle content, but such attribute content
is not allowed to contain markup; there-
fore this limits the usefulness of that subti-
tle content.

Defining everything as an element. (0O
programmers often think this way; inheri-
tance comes by family relationship rather
than by attribution.) But in our non-linear
world, things don’t always line up this way.
Mislabeling attribute types. (“Hmmm,
should this be NAME or NAMES or
NMTOKEN or NMTOKENS?”) If it is not
clear how to type an attribute, it’s best to
consult the XML recommendation, another

DTD guru or a newsgroup such as
comp.text.xml.

Making all elements required. In authoring,
this turns a document into one massive form
or template — no flexibility. On one hand,
this may be a useful trait, such as ensuring
that a form always expands to show all
required sections, but for rich document con-
tent, this sets up ljmiting contexts for writing.

Some tools require putting a doctype and
subset container around the DTD; other

tools require NOT putting a doctype and

subset container around the DTD (due to
different interpretations about doctype in
the XML Recommendation).

Not allowing multiple occurrences of things
in an OR group (use one element and then
you can’t use any others in that context).

Using the “1 or more” occurrence indicator
for an optional element. (This indicator
might not cause a compile error.)

Failing to use a “0 or more” occurrence

indicator on content models that contain
PCDATA <!ELEMENT Para (#PCDATA, :
Emph, BulletList, Table)><!-- should be ...”
Table)*>" -->

10. Creating inadvertent ‘recursive’ elements.
Recursion is certainly allowed and you may
have an intentional need for it. When it is
not intended, it may occur because of the

use of parameter entities or may occur when

an element is allowed in lower levels of con- :

tained elements.

Above all, just be mindful not to dream up

something so complex that nobody loves it or
: wants to use it. XML DTDs are as much for
people as they are for the data that people are
: asked to author or write tools for!

What'’s on the horizon?
The World Wide Web Consortium (W3C)

¢ has chartered a working group to develop a

: schema mechanism to replace DTDs. Schemas
express more information about the meanings
: of elements and relationships that cannot be
expressed by the peculiar, Grep-like syntax of
¢ DTDs. Development on this standard has been
: slow because developers and vendors have to
confront the difficult parts of implementing

. XML. The current draft may be obtained at

: http://www.w3.org/TR/xmlschema-1/. This

article is worth reading to help you get ready

. for the schema-based tools that are expected to

. roll out in the coming year.

Once you have XML documents that are

: both valid and well formed, the next step is to

. use that data. Most of the browsers that cus-

* tomers use to read your data will not be native-
ly able to read XML. Your next goal as a devel-

oper will be to learn more about the transfor-

. mational component of the Extensible
: Stylesheet Language, or XSLT

(hllp://www.w3.0rg/TR/xsll).

Don Day is an advisory software engineer for

: IBM. For the past 15 years, he has designed and
supported publishing tools JSor IBM’s Information
Development community. Don provides XML
expertise for Information Design and
Development in IBM’s e-business Operating

¢ Systems Solutions area (located in Austin,

Texas) and for IBM Corporate User Technology.

‘' He has represented IBM on the W3C XSL

Working Group and is presently IBM’s alternate

rep for the W3C CSS Working Group. Don holds
: a dual-major Bachelor of Arts degree in English
: and Journalism and a Master of Arts degree in

Technical and Professional Communication
(with a minor in Computer Science) from New

. Mexico State University. You can contact Don at
¢ dond@us.ibm.com.

IBM LEADS IN U.S. PATENTS FOR
SEVENTH CONSECUTIVE YEAR

FOR THE SEVENTH CONSECUTIVE YEAR, IBM
WAS AWARDED THE MOST U.S. PATENTS IN
1999. WITH A RECORD 2,756 PATENTS
ISSUED BY THE U.S. PATENT AND
TRADEMARK OFFICE, IBM TOPPED THE
NEXT CLOSEST COMPANY BY MORE THAN
900 PATENTS.

THE COMPANY WAS AWARDED A TOTAL OF

MORE THAN 15,000 PATENTS DURING THE
19905, TRIPLING ITS OUTPUT OF THE PREVI-
OUS- DECADE AND 2,300 MORE THAN THE
NUMBER TWO PRODUCER OF PATENTS,
CANON.

THE RESULTS WERE REPORTED TODAY BY IFI
CLAIMS PATENT SERVICES, WHICH COM-
PILES THE CLAIMS PATENT DATABASE AND
ANNUALLY REPORTS THE NUMBER OF
PATENTS ISSUED TO COMPANIES.

A COMPANY SPOKESPERSON CITED THE
ROLE OF IBM’S PATENT PORTFOLIO IN MORE
THAN $30 BILLION WORTH oF OEM AGREE-
MENTS SIGNED BY THE IBM TECHNOLOGY
GROUP IN 1999. IN ADDITION, PATENT AND
INTELLECTUAL PROPERTY LICENSING
EFFORTS GENERATE MORE THAN A BILLION
DOLLARS IN REVENUE ANNUALLY.

IN ADDITION TO HARDWARE AND COMPO-
NENTS, IBM’s 1999 PATENT PORTFOLIO
INCLUDES MORE THAN 900 SOFTWARE-
RELATED PATENTS THAT ARE FUNDAMENTAL
TO THE COMPANY’S E-BUSINESS STRATEGY.
By compaRisON, IFI CLAIMS RECORDS
SHOW THAT MICROSOFT CORPORATION WAS
AWARDED 353 PATENTS IN 1999, RANKING
IT 38TH AMONG COMPANIES, AND ORACLE
WAS NOT ISSUED ENOUGH PATENTS TO QUAL-
IFY FOR THE TOP 50.

www.develope r.ibm.com/devcon/

The Pervasive Computing
Paradigm

by Bill Bodin

y now you may
have heard the
quote from our

CEOQ, Lou Gerstner,
“...Picture a day

when a billion people will interact with a mil-
lion e-businesses via a trillion interconnected
devices....” The challenge this presents to the
IBM Pervasive Computing Division is the cre-
ation of an architecture that provides an end-to-
end capability to deliver content and function to
and from these intelligent devices. This archi-
tecture must implement aspects of reliability,
security and information scaling in such a way
that the user doesn't think about how the data is
delivered; rather, the user is simply enabled to
make intelligent and informed decisions based
on the “pervasive” availability of the data. This
article will explore both the application devel-
opment opportunities and the environments
within which these applications exist and interact.
Pervasive applications

As you can imagine, the applications in
support of this pervasive paradigm are seem-
ingly infinite in number. While the main focus
areas are Automobile Network Solutions,
Networked Home, and Mobile e-business,
there are many application and device support
opportunities that comprise sub-elements of
these categories. Let’s take a closer look at
these focus areas.

Automobile network solutions

For the most part, today's "in-vehicle con-
nectivity" is achieved through a collection of
pagers and cell phones. These devices allow us
to stay in touch with people who require our
interaction. This interaction is based largely
on issues and events that arise spontaneously
in our environment. As much as this allows us
to “stay in touch,” it also is largely responsible
for the steady stream of non-productive inter-
ruptions that seem to predominate. The fun-
damental problem is that while these devices
allow you to interact, they, historically, do not
allow you to make informed decisions based

18

cene

on numerous pieces of related data.

Imagine it’s 9 p.m. at night and you're dri-
ving on an extended trip. You're scheduled to
stop for the night at 11 p.m. An hour ahead
you'll run into a strong band of thunderstorms.
With Pervasive technology, your “networked
vehicle” would have communicated with
Doppler weather servers to inform you of the
severity of the impending weather condition and
offer you a means to consider a number of dif-
ferent options including detours, hotel reserva-
tions changes and itinerary management. The
services mentioned in this case, weather infor-
mation, hotel reservations, and itinerary manage-
ment, would all be examples of “vertical market”
applications that are a natural fit into Pervasive
Computing. The appliance, which surfaces the
data in this scenario, will become as ubiquitous
as your cell phone and as common as your car
radio. In fact, it is a merger of these two current
technologies, and many more, that will facilitate
the entire pervasive information revolution. In-
car radio appliances will allow custom and con-
figurable access to news, stock quotes, streaming
data, books on demand, ticket purchasing, food

ordering, reservations and many more services.

* The IBM Pervasive Computing open architec-

ssscee

sseccsssssecsses

esssssssssesesces

esessssane

ture will support this “information revolution”

from the client to the middleware applications

through to the enterprise servers.
Networked home

The IBM Networked Home initiative
includes the specification of a reference plat-

Pervasive Computing

architecture must implement
aspects of reliability, security
and information scaling in such a
way that the user doesn’t think

ahout how the data is delivered
but enables the user to make
intelligent and informed

decisions.

seseee

cessessee

cees

ceescsesesssssssesesesesssssesvsesce

cese

.

form referred to as the “Service Gateway.”
This gateway device comprises a processor,
memory, network connections, and more. The
software stack includes an embedded Web
server with Java servlet capability.

The Service Gateway, like the automotive
appliance mentioned above, is capable of
managing numerous in-home or enterprise
tasks. In the household environment, the
Service Gateway, when equipped with a pow-
erline protocol modem, is capable of manag-
ing your “enabled” appliances using no new
wires. With a suite of powerline protocol ver-
tical applications (Java servlets or native)
implemented on the gateway, you could, for
instance, adjust your thermostat from any-
where in the world or invoke a simulation of
your living patterns to give your home a “lived
in” look when you're away. In this case the
gateway could serve HTML pages to a browser
or present servlet entry points to an Internet-
enabled cell phone. With the Pervasive appli-

: cation programming model accommodating

both Java and native interfaces, the developer
now has a wide array of possible implementa-

. tion opportunities.

esssssssssses

cesssssssssscsecce

Enterprises can look forward to the
Service Gateway coalescing data, managing
inventory, and dispatching delivery personnel
in vending-related services.

Other vertical opportunities include man-
aging multiple PPP connections from a single
ISP, Virtual Private Networking (VPN)
Support, providing collateral support for thin
client Screenphones, Intelligent Agents, main-
taining an “always-on” Web presence, and
much more.

Mobile e-business

Nowhere in the Pervasive Computing par-
adigm is information scaling more important
than in the Mobile e-business arena. This
focus area comprises devices such as pagers,
conventional cell phones, Internet-enabled
cell phones, personal digital assistants (PDAs),
and other similar devices.

Enhancements in the use of these devices
is due in part to the use of XML. XML pro-
vides an important advantage over HTML as
the essential aspects of the data are actually an

integral part of the data. When XML is used as : dynamic determinations, based on the clients' : to Pervasive Computing in future articles.

the mark-up language for server-side content, : capabilities, and then converts large graphics

Bill Bodin, a Senior Technical Staff Member,

: leads the research and development efforts for

components, such as proxies or more specifi- : and voluminous text into data appropriate for

cally “transcoding” proxies, can be utilized to : the receiving client. It is important to consider

serve an appropriate view of the data to a par- : the device characteristics in the design phase. * the Pervasive Computing Division at IBM in
I . 5 . I <]

ticular class of devices. For instance, let’s say : In a Pervasive Computing enterprise, these : Austin, Texas. He is currently involved in bring-

that a real estate agency would like to make : characteristics affect the architecture of the : ing key technologies to IBM’s Pervasive

: backend data store as well as the server-side

data available to their field agents using low-
cost hand-held PDAs. Depending on the band-
width and graphical display capabilities of

¢ Development Organizations. The Pervasive
¢ intelligence (proxies) that may exist to serve a : Advanced Technology Laboratory provides the
. heterogeneous mix of clients. . conduit through which many of these technolo-

these devices, the information that is actually Current solutions that exist for both Palm

: gies flow. Bill has been awarded several United
. Computing Platforms and Windows CE are
IBM Mobile Connect, IBM Mobile Net

¢ Connect, IBM NuOffice, and IBM SecureWay.*

an IBM ThinkPad* (representing a very robust

delivered may differ from device to device. A
typical IBM WorkPad*® delivers content in a
monochrome 160 x 160 pixel window, while

. States Ppatents across many disciplines related
: to computer operating systems and related plat-
: forms with several additional patents pending.

For more information on these products visit He is a frequently requested speaker at many

client platform) presents data at SVGA resolu- ¢ http://www.ibm.com/pve. Look for more infor- % technical developer conferences. You can con-

tions and above. A transcoding proxy can make : mation on transcoding and the relevancy of XML : tact him at bbodin@us.ibm.com.

| Pervasive Computing’s
| Advanced Technology Labhoratory

THE “PROVING GROUND” FOR MANY OF THE
PERVASIVE TECHNOLOGIES MENTIONED IN
THIS ARTICLE IS THE PERVASIVE
CoMPUTING ADVANCED TECHNOLOGY
LABORATORY. THIS LAB, LOCATED IN
AUSTIN, TEXAS, INTEGRATES AND INNO-
VATES LEADING LEADING-EDGE TECH-
NOLOGIES INTO BOTH RESIDENTIAL AND
ENTERPRISE SCENARIOS. THIS LAB DEMON-
STRATES TECHNOLOGIES SUCH As HOME
AUTOMATION POWERLINE PROTOCOL
DEVICES, INFRARED HOME THEATER MAN-
AGEMENT, WIRELESS DATA COMMUNICA-
TIONS, SCREENPHONE, SCREENFRIDGE,
NETWORKED VEHICLE, AND MORE. THESE
TECHNOLOGIES SHARE A CROSS-PLATFORM
ARCHITECTURE IMPLEMENTATION USING
BOTH JAVA AND NATIVE COMPONENTS.
MANY OF THESE TECHNOLOGIES REPRE-
SENT VERY THIN CLIENT ARCHITECTURES
USING JAVA SERVLETS. THESE JAVA

SERVLETS PROVIDE DIRECT ENTRY POINTS

TO ACCOMPLISH SPECIFIC TASKS. THIS
IMPLEMENTATION ALLOWS ACCESS BY THE
WIDEST POSSIBLE RANGE OF NETWORK-
ENABLED DEVICES SUCH AS WIRELESS
PDAS, INTERNET-ENABLED CELL PHONES,
NETWORKED VEHICLES, AND OTHERS.

Visit IBM’S INTERNET RESOURCE AT
HTTP://WWW.IBM.COM/PVC FOR UPDATES
AND ANNOUNCEMENTS REGARDING THE
ADVANCED

PeErvAsSIVE COMPUTING

TECHNOLOGY LAB.

LOOK FOR MORE DETAIL ON DESIGNING
FOR THE EMBEDDED ENVIRONMENT,
XML AnD PERVASIVE COMPUTING, THE
IBM PEeRVASIVE CLIENT STACK, AND
SERVER SIDE COMPONENTS IN FUTURE
ARTICLES IN THIS PUBLICATION.

19

www.(](‘vvlop(-r.i])m.('()m/ devcon/

Java cryptography Part 2:
Key generation and management

by Anthony
Nadalin, Theodore
Shrader and Bruce
Rich

“=“eginning with
Version 1.1 of
Sun’s® Java
Development Kit
(JDK), general pur-
pose APIs for cryp-
tographic functions,
collectively known
as the Java
Cryptography
Architecture (JCA),
were provided
along with their

extension, the Java
Cryptography Extension (JCE). The Java 2

Standard Development Kit (SDK) significantly
enhances the Java Cryptography Architecture.

tificate management infrastructure to support
X.509 V3 certificates.

Note: The Java Development Kits (JDKs) are
referred to as Standard Development Kits (SDKs) in
Java 2.

This article continues our discussion of

Key generation and Management classes
used in advanced encryption and decryption
and how to create a program exploiting
these features. For more information, see
"Java cryptography Part 1: Encryption and
decryption," published in the January 2000

issue of the Developer Connection Technical :

Magazine. An HTML version of the maga-
zine is available on the Developer
Connection Web site at
www.developer.ibm.com/devcon/mag.htm

Secret key interfaces and classes

JCE 1.2 offers a set of classes and interfaces :
to manage secret keys. Also known as symmet- :
ric or private keys, secret keys are used at both :

ends of the cryptographic process. The secret
key that encrypts contents also can be used to
decrypt the encrypted contents.

20

:+ The javax.crypto.SecretKey interface con-

* The javax.crypto.SecretKeyFactory class

: vert keys (opaque cryptographic keys of type
3 Key) into key specifications (transparent rep-
Specifically, the Java 2 SDK augments the cer- resentations of the underlying key material)

: and vice versa. In particular, secret key facto-

: ries operate only on secret keys.

: specifies a secret key in a provider-indepen-
¢ dent fashion. It can be used to construct a

Java Cryptography and describes some of the : to go through a provider-based

: SecretKeyFactory. This class is useful only for
: raw secret keys that can be represented as a

tains no methods or constants. Its only
purpose is to group and provide type safety :
for secret keys. Provider implementations :
of this interface must overwrite the :
equals() and hashCode() methods inherited
from java.lang.Object, so that secret keys :
are compared based on their underlying
key material and not based on reference.
Since it extends the Key interface, this
interface is an opaque representation of a
symmetric key.

represents a factory for secret keys. Key
factories are bidirectional, which means
that they allow building of an opaque
Key object from a given key specification
(key material) or retrieving the underly-
ing key material of a Key object in a suit- :
able format.

In general, key factories are used to con-

The javax.crypto.spec.SecretKeySpec class

. byte array and have no key parameters associ-
: ated with them, for example DES or Triple

DES keys. This class is a transparent represen-

: tation of a secret key.

The KeyGenerator class

The java.security.KeyPairGenerator class,

which is part of the Java 2 SDK, Standard

. Edition, V1.2 APIs, is used to generate a pair
: of public and private keys. Key pairs differ

: from secret keys in that one key is used to
decript the encrypted data stream or vice
versa. JCE 1.2 provides for a KeyGenerator

. engine class which is used to generate secret

. keys for symmetric algorithms. KeyGenerator
: objects are created using the getInstance() fac-
tory method of the KeyGenerator class. Notice
that a factory method is by definition static.

The getInstance() method takes as its

: argument the name of a symmetric algorithm
: for which a secret key is to be generated.
Optionally, a provider name may be specified.
If just an algorithm name is specified, the sys-
: tem will determine if there is an implementa-
: tion of the requested key generator available

: in the environment and, if there is more than
: one, the preferred one will be selected. If
both an algorithm name and a package

. provider are specified, the system will deter-

: mine if there is an implementation of the

: SecretKey from a byte array, without the need requested key generator from the requested
provider and throw an exception if there is
not. A key generator for a particular symmet-
: ric-key algorithm creates a symmetric key

: that can be used with that algorithm. It also

Java Cryptography

describes Key generation and
management classes used in
advanced encryption and

decryption and how to

create a program
exploiting these
features.

: associates algorithm-specific parameters (if

: any) with the generated key.

The KeyAgreement class

Whenever two or more parties decide to

. initiate a secure conversation over a non-
: secure communication channel, they need to
: use the same secret key (which is called the

session key), without transmitting it in the

: clear over the channel. To achieve this, pub-
lic-key encryption could be used to transmit
. the session key securely.

Alternatively, another solution is to use

key agreement. A key agreement is a protocol
: that allows two or more parties to calculate
: the same secret value without exchanging it

directly. Therefore, the parties share the
same secret key and can encrypt the commu-
nication using symmetric encryption. The
most famous of these protocols is the Diffie-
Hellman (DH) algorithm, an implementation

ence implementation.
The javax.crypto.KeyAgreement class

protocol. The keys involved in establishing a
shared secret key are created by one of the
key generators (KeyPairGenerator or
KeyGenerator), a key factory, or as a result

ment protocol.
Each party involved in the key agreement

be done using the getlnstance() factory
method of the KeyAgreement class. This
method accepts as its argument a string repre-

senting a key agreement algorithm as parame- :
: wants to encrypt the data to maintain its safety
in transit. He writes a program called

. Encryptl.java which does the following:

: 1. Reads data from a text file JavaTeam.txt

2. Encrypts the data using a Cipher object

ter. As with the KeyGenerator class, you can
specify a provider as the second argument.

If the Diffie-Hellman algorithm is used, a
Diffie-Hellman private key is used to initial-
ize the KeyAgreement object. Additional ini-
tialization information may contain a source
of randomness and/or a set of algorithm
parameters.

Every key agreement protocol consists

by each party involved in the key agreement.
The doPhase() method is used to execute the
next phase in the key agreement. This method
takes two arguments: a Key and a boolean.

*+ The Key argument contains the key to be

processed by that phase. In most cases, this

is the public key of one of the other parties
: the two files bob.enc and bob.key. Alice, at the

: receiving end, writes a program named

involved in the key agreement or an inter-
mediate key that was generated by a previ-
ous phase. The doPhase() method may
return an intermediate key that you may
have to send to the other parties of this
key agreement, so they can process it in a
subsequent phase.

* The boolean parameter specifies whether
or not the phase to be executed is the last
one in the key agreement.

* A value of false indicates that this is not

the last phase of the key agreement and
there are more phases to follow.

phase of the key agreement and the key

agreement is completed.

After each party has executed all of the
required key agreement phases, the secret key

: can be computed by calling the
: generateSecret() method.

. Practical example of Java Cryptography

of which is provided by Sun in JCE 1.2 refer- leanil tts Eiud ol spplissiions S yilich e
. JCA can be used.

‘ X £ : series, we provided an example where a text
provides the functionality of a key agreement : e WP P
: file in the same class was encrypted and then
. decrypted. Real-life situations are more com-
. plex. A realistic situation would be when two
: persons are situated at two different locations
% g ¢ and want to exchange data safely by encrypt-
from an intermediate phase of the key agree- : - T P
: ing the data during transmission. In this situa-

! tion, there are two different programs for

5 g . encryption and decryption.
has to create a KeyAgreement object. This can : Rl P

: scenario. Bob and Alice, want to exchange

3. Stores the encrypted data in a file bob.enc

of a number of phases that need to be executed : & Syares theseumet key 1n suvthechile

by the Encryptl Java program:

: Decryptl.java that does the following:
: 1. Reads the data from the encrypted file

2. Reads the key from the bob.key file

4. Writes the decrypted data into a file

* Avalue of true indicates that this is the last :

* this program.

This section describes a couple of exam-

In Part I of this Java Cryptography article

Cryptography scenario
In the first example, consider the following

data. Bob wants to send data to Alice and

initialized by the DES algorithm and a
DES secret symmetric key

bob.key
The file JavaTeam.txt read and encrypted

Bob runs his program and then sends Alice

bob.enc

3. Initiates a Cipher object using this key and
decrypts the data from bob.enc

bob.dec

Bob’s program
Bob’s program, Encryptl.java is shown in

Bob issues the javac command to compile

Listing 1.

21

www.developer.ibm.com/ devcon/

CONTINUE OM PAGE 21

Next, Bob launches it by passing the

names of the following files on the command

line:

* The input file that he wants to encrypt

+ The output file containing the encrypted
data

+ The output file containing the encoded key

This is the full command launched by Bob:
java Encrypt1 JavaTeam.txt bob.enc bob.key

The program runs successfully and two
files are generated: the file bob.enc containing
the encrypted data and the file bob.key con-

taining the encoded key.
Alice’s program

Alice receives the two files bob.enc and
bob.key and wants to decrypt the encrypted
data contained in bob.enc using the key con-
tained in bob.key. For this reason, she writes a
program that retrieves the key from the
bob.key file, uses the key to initialize a Cipher
object and uses the Cipher object to decrypt
the message contained in the file bob.enc. The
decrypted message is stored in a file called
bob.dec.

Alice’s program, called Decryptl.java, is
shown in Listing 2.

Alice compiles the program above with

javac.
java Decrypt1.java

Then she launches the program by passing
the following file names on the command line:
+ The encrypted file to be decrypted
* The file containing Bob’s key
*+ The output file where the decrypted data

must be saved

This is the full command launched by Alice:

java Decrypt1 bob.enc bob.key bob.dec

The program executes successfully and as
a result it produces the bob.dec file, contain-
ing the decrypted text. On opening bob.dec
with a text editor, it shows the same contents
as the file JavaTeam.txt. Using Bob’s key,
Alice has successfully decrypted the message
sent by Bob. This example showed the
encrypted contents and secret key being
accessible from the same location. Typically,
the secret key is not sent with the encrypted
contents. Instead, Alice and Bob would

exchange the key through some secure

22

800668808888 0000000008008 00000 s 0008000 e 08 e 80080 s 60800 s 060080 e e S0 S0 s s s e e 0600000000000 000 0000000000000 00c0NsONNNOOIOIIOIOIOIIOINITLE

means or Alice and Bob would use a

key agreement protocol.

Conclusion

The JCE includes classes that
extend the Java Cryptography
Architecture and allows developers to
design and implement advanced
cryptography techniques. Developers
can choose from a variety of key
types, including secret keys, key pairs
and keys generated through key
agreement protov()ls.

For more information on Java
Security, consult the JavaSoft Web site
at http://java.sun.com/products/jdk/
1.2/docs/guide/security/index.html.

Anthony Nadalin is the lead architect

for the IBM Java Security project. As

the senior architect, he has responsibil-
ity for infrastructure design and devel-
opment across IBM. He serves as the
primary security liaison to JavaSoft for
security design and development col-
laboration. You can contact him at

drsecure@us.ibm.com.

Theodore Shrader is a feature lead in
the IBM Java Security project. He has
written numerous patents and articles
dealing with Internet and Java devel-
opment, distributed computing, object-
oriented design and database architec-
ture and programming. He also is a
co-author of an operating systems pro-
gramming guide published by John
Wiley and Sons. You can contact him

at tshrader@us.ibm.com.

Bruce Rich is the team lead of the IBM
Java Security project. He has been
involved. in software for 21 years, first
in operating systems development, then
in secure distributed file systems, more
recently in secure Web server applica-
tions and Java. He has filed a number
of patents and contributed to a book on
distributed computing. You can con-
tact him at rbruce@us.ibm.com.

import java.io.*;

import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;

class Decrypt1
{

public static void main(String args[])

if (args.length != 3)
System.out.printin(“Usage: java Decrypt1 inputEncryptedFile keyFile
outputFile”);
else
try
{
// get the key to decrypt
FilelnputStream kfis = new FilelnputStream(args[1]);
byte[] encKey = new byte[kfis.available()];
kfis.read(encKey);
kfis.close();
SecretKeyFactory mykeyfac1=SecretKeyFactory.getinstance(“DES")
DESKeySpec dk = new DESKeySpec(encKey);
SecretKey mykey1 = mykeyfac1.generateSecret(dk);

// generate a Cipher object
Cipher jceCipher = Cipher.getinstance(“DES/ECB/NoPadding”);

// initialize the Cipher object to decrypt mode
jceCipher.init(Cipher.DECRYPT_MODE, mykey1);

// access the file to be decrypted
FilelnputStream data = new FilelnputStream(args[0]);
BufferedinputStream bis = new BufferedinputStream(data);

int len1 = bis.available();

byte[] encText1 = new byte[len1];
byte[] buff = new byte[len1];

// update the cipher with the data to be decrypted
while (bis.available() != 0)
{
len1 = bis.read(buff);
int countjlit = jceCipher.update(buff, 0, len1, encText1);

bis.close();
data.close();
ceCipher.doFinal();

// write the output file containing the decrypted data
FileOutputStream encfile = new FileOutputStream(args[2]);

encfile.write(encText1);
encfile.close();

}

catch (Exception e)

System.out.printin(“Caught Exception: “ + e);

Listing 2.

Sash Weblications for Windows:

An overview for programmers

Edited by Sean Martin

Editor’s note: This article
is intended for program-
mers who would like an
answer to the question:
Should 1 seriously consid-

er Sash for my next pro-

gramming project? This
article is neither definitive nor comprehensive for any
aspect of Sash, including technical, business case or
philosophy. Other documents exist describing those
aspects as does software that you can try. (Refer to the
IBM Alphaworks site at http://sash.alphaworks.
ibm.com for more information.) But should you bother
to delve into those more time-consuming resources?
The author is a programmer who needed an answer to

that question. Read on for his conclusions.

Sash description

~ashisa programming environment and
delivery platform for weblications. A weblica-
tion is a program that is:

+ Easy to develop, even for people who are
familiar only with Web page creation.

* Small, but leverages existing large compo-
nents and operating system services.

*+ Easy to install and distribute updates.

*+ [Easy to integrate into the native
desktop/work-area seamlessly.

* An encapsulation of operating system func-
tionality, which provides ease of use and
higher-level access to features that previ-
ously only Windows programming experts
could understand well enough to employ.
Examples of such features include:

Win32

COM programming

C++

Obscure and complex GUI APT’s

Creating installation or e-installation

programs
Note: Sash also is being developed for other platforms
including Windows CE, Palm Pilot and Linux.

Sash contains SashScript, an extension to
JavaScript that permits the program to run in
non-browser contexts (known as “Locations”
such as the Windows desktop tool bars or in

cesssene

cesssssccnns

cene

“esssesssessscsssssssssssssssssnnn

“ecsssesssssssssessctssssasnas

the Start toolbar) as well as being able to look
like a regular Windows application.

The platform

A Sash weblication currently can run on a
machine that is running Windows 95,
Windows 984, Windows NT* and Windows
20004 Work to support other operating sys-
tems is underway. It requires the Microsoft*
WebBrowser control version 4.71.1712. An
easy way to do this is to install Microsoft
Internet Explorer* 4.0 or above. Most systems
shipped in the last two years already have all
the pre-requisite software.

The client must have the Sash Weblication
Manager installed on it. This software supports
the SashScript interpreter and provides func-
tionality common to many weblications. Using
the Weblication Manager’s capabilities, mini-
browser windows are created and embedded in
the familiar controls (interface widgets, the
start bar, the icon tray, etc.) of the Microsoft
desktop. In each of these “Locations,” a webli-
cation creates and manipulates one or more of
these mini-browsers and its containing control.

The Weblication Manager is about 1.6 MB
of DLL and EXE files. This engine can be easi-
ly installed directly from the Web. It must be
downloaded only once and is done so automati-
cally with the first weblication that a user
installs. Weblications are essentially Web pages
that have behavior coded in SashScript and are
typically several to tens of kilobytes.

The Weblication Manager provides:

Sash permits
rapid development by

enabling the programmer to
leverage existing complex,

hard-to-write components

that already are on the
user’s system.

.

tesesssesscsssssssssnes

csscsssssessnns

+ Integration of weblications with a Microsoft
Windows desktop by simplifying and
abstracting the interfaces.

+ Support for inter-weblication
communication.)

+ Simple methods for securely reading and
writing of the Windows registry and file sys-
tem and access system services.

+ Secure network communications, such as
getting Web page contents and manipulat-

ing their Document Object Models (DOM).

.+ Creation of new types of windows -- includ-

ing irregular shapes and sprite animations.

+ Automatic updating of the engine itself as
well as installed weblications.

* A caching system to allow fast execution
and disconnected use of weblications.

The strategy

More than 90 percent of personal comput-
ers in today’s business environments are run-

¢ ning Win32 operating systems. Sash supports
: Win32. It enables much simpler programming
: and tighter integration with the Win32 plat-

forms than would otherwise be possible using
only a browser. Sash permits rapid develop-
ment by enabling the programmer to leverage
existing complex, hard-to-write components
that already are on the user’s system. Sash
weblications strive to free the user interface
from the confines of traditional windows and
browsers by supporting the development of
user interfaces that integrate into the desktop
while still utilizing browser technology.
Miniature, unobtrusive user interface compo-
nents can be tucked into the borders of the
desktop, either permanently visible or “show
on mouse-over” just as the Windows Start tool-
bar is commonly configured to do.

By providing easy access to Windows com-
mon Ul components, weblications tend to
adopt a similar look and feel to the Windows
UI, making the user experience uniform and
achieving tight visual integration with the
Windows desktop. Weblications can look like
Web pages in browsers or like applications that
have been written in full programming envi-
ronments such as C++. Weblications can take

CONTINUED ON PAGE 24

wwwd(,‘V(‘Iop(‘r. ibm.com/devcon/

CONTINUED FROM P,
advantage of style sheets just like ordinary
Web pages.
A weblication may trigger an event in

another weblication by writing a message to a

channel that the target weblication is listen-

ing to. These messages are only strings; other

data structures cannot be sent or shared.

However, because SashScript is a superset of

JavaScript it has eval, so that a message may

contain source code that is evaluated in the

target weblication.
Programming with Sash
A Sash weblication is one or more Web
pages that contain HTML and SashScript.

SashScript is JavaScript augmented with a few

hundred additional Sash functions, properties

and events for:

* Access to Windows guts such as the reg-
istry, file system, custom dialogs, network-
ing and if necessary any API function.

* Inter-weblication communications.

+ Control of the Windows desktop environ-
ment surrounding a weblication.

For instance, a weblication embedded in

the Windows Start toolbar can react to resizing :

+ Windows Explorer Shell Namespace. The

events from the operating system (such as
when the user stretches the Start bar).

In general, weblications cannot be browsed :

in an ordinary browser if they utilize Sash’s
JavaScript extensions because most of the
Sash objects will not be available. However
certain Sash objects in the “Common Sash

rity risks associated with them, and a couple of

objects that can manipulate Internet Explorer

can be accessed in Web pages that are special- :

ly designed to be browsed with Internet
Explorer on a machine that has the Sash

Weblication Manager installed. Work is under-

way to provide a secure way of giving Web
pages the same security access context that a
weblication has.

A weblication is made up of one or more
Actions. Each Action lives in a Location that
determines where on the desktop the Action
will appear and which environment it will run
in. The available Locations are:

*+ Desktop Band. A pane in the Windows

Start Button bar.

* Explorer Bars. The vertical Explorer bar is
: + Weblication testing tools.

situated in the left pane in
theWindows/Internet Explorer window.
Usually a list of directory folders appears
in this position. The vertical Explorer bar
location can be a substitute for the

24

: + Desktop Toolbar. The pane found on the

+ Property Sheet. You can embed Actions in

: contains tools to help develop weblications
: including:

+ Example code.

: + The Weblication Maker for creating webli-
: + The Weblication Publisher for preparing
* Debugging tools.

.+ Templates for development environments.

. Weblication Maker wizard to create the webli-

Explorer Folders view. The horizontal
Explorer bar is also a location in a
Windows/Internet Explorer window usual-
ly splitting the right pane in two. Both are
enabled when the user selects the menu
options “Views” and then the submenu
option “Explorer Bar.”

Windows desktop that resides along the
borders of the screen. This pane is some-
times hidden until you move the mouse. :
The pane can be dragged from one edge of :
the screen to another. It is a custom :
version of the Start bar. It is invoked by
double-clicking on the .dtb file in the
Windows Explorer.

property sheets, which are usually tabbed
dialogs. Property sheets open when you
right-click a file and select the properties
context menu item.

: « Screen Saver. An Action can be the screen

saver on your computer that appears after
your computer has been idle for several

minutes.

namespace provides ownership of a Folder :
tree under the Windows Folder hierarchy
(such as My Computer and Network
Neighborhood). It also provides control of
the right-hand Explorer pane, when the
“owned” folder hierarchy has focus.

* « WinDHTML. This Location creates a

API” set, which were deemed to have no secu- -

stand-alone application. Its main window
can be invoked by double-clicking on the
associated .dex file in the Windows
Explorer.

Building weblications
The Weblication Development Kit [WDK]

: + Searchable API reference documentation

[in MS HTML help format].
cations -- this includes a wizard to get you
started quickly.

your weblication for distribution.

To develop a weblication, you first use the

: cation and its associated Actions. Then, you

* write files containing HTML and SashScript to
supply the behavior for each Action. The

: HTML and SashScript may be created in any

¢ text editor, although Microsoft’s Visual

: Interdev 6.0 is currently the easiest environ-

: ment to use because Sash augments Visual
Studio’s “Intellisense” function with the Sash

¢ objects and properties as well as supports its

: step through debugger for all weblications.

You then use tools in the WDK to test and
debug your weblication.
When the weblication is complete and test-

ed, you package it for distribution by running
: the Sash Weblication Publisher. This prompts
you to:

* Give a human-readable name for the

weblication.

P+ Give a textual description of the weblication.
: + Connect the Action HTML files to the

appropriate desktop Locations where they
will implement the weblication behavior.

i+ Give a graphic file to use as a “logo” or a

Web page for use during the weblication
installation.

+ Indicate additional source files [html, gif,

cab, etc.] and where they should be
installed.

* Indicate which files should be placed in

the end-user’s cache.

i+ Indicate the level of system access required

by the weblication. These will include
things like reading and writing to the user
disk that are often considered to be securi-
ty violations.

: + Indicate licensing information.
¢+ Indicate instructions for use.

: « Indicate what to do in the event of failed

installation.

* Digitally sign the weblication for guarantee-

ing code and author validity and identity.
When you have specified the meta-data for

your weblication, the Weblication Publisher

: generates a unique identifier (a GUID) for the
: weblication and performs code-signing. Based
: on the above information, the Weblication
Publisher produces a Weblication Definition

: Format (WDF) file in XML syntax. It also

¢ might compress the files into a single/multiple
* archive file. Finally, the Weblication Publisher
: creates a “weblication home page” HTML file
from a template (which may be altered). The
. developer then uploads the finished weblica-
: tion to a normal Web server using the

: Weblication Publisher’s “upload” facility.

Although the weblication code may be
entirely local to the end-user’s machine,
server-only or server-client code storage are

normal, too.

The Sash end-user experience

To install a weblication, the user browses
the newly created home page of the weblica-
tion and clicks on the install button. The user
will be informed about the digital signing,
system requirements and licensing/payment
characteristics of the weblication as defined by
the developer. If the user accepts these terms,
the weblication will be installed in just a few
seconds and is immediately usable without
rebooting. If the subscription terms require
immediate payment, a normal Web commerce
server is employed.

If the Weblication Manager has not yet

been installed on the user’s machine, it is auto- :

matically installed. If the Weblication Manager
is installed already but is an obsolete version,
then it is updated to the current level.

The user can now operate the weblication
in the same manner as any other Windows
application. Depending on the developer’s
specification, the weblication may be updated
automatically at any time. The user can use the
control panel to remove the weblication just

. like any other Windows program.

Sash, keep the following limitations in mind:
L Sash doesn’t yet address server-side

* Currently only the Windows platforms are

¢ who have limited experience. If you are inter-
: ested in using Sash, keep the following in mind:

* The downloading and installation of a 1.6

i+ Your application doesn’t require a lot of

Limitations in Sash

Sash is brand new and is not yet extensively :

: documented or tested. If you choose to use

processing.

supported.

Conclusion

Sash is a programming environment and

delivery platform for weblications — applications
. that are easy to program even by programmers

Don’t consider Sash if:

non-user interface code that is computa-
tionally intensive (although you can use

Java and native controls with and in Sash
weblications to overcome this limitation).

MB runtime engine is too much of a bur-
den for the end users.

Do consider Sash if:

complex “business logic” and if you:

.+ Want to use your Web technology tools and

skills to build Windows programs

:+ Want Desktop and desktop application inte-

gration (including matching look and feel)

¢+ Want Integration with other weblications

: * Are short on “hard-core” programmer time

or talent

‘e Need easy delivery and updating to end-

user machines

: + Want “instant on” applications over the

network.

: Sean Martin works in IBM’s Advanced Internet
Technology Group in Cambridge, MA. He is one
S e W application requires:s lnge smonit of . of the lead architects and implementers of IBM’s
: : Sash Weblications for Windows technology

¢ (http://sash.alphaworks.ibm.com/). In a previ-

: ous life he architected and built much of the
technology behind IBM’s high volume Web sites
¢ including the Atlanta Olympics, Wimbledon, the
: US Open and the Kasparov Chess matches. He

: was the inventor of IBM’s prototype Web Object
: Manager (WOM) technology and has written
various patents. Now days he spends all his

: time developing and evangelizing Sash. He can
: be contact at sean@gemini.ibm.com

IBM WebSphere Studio V3.0 Fix Packs
available for download

www.ibm.com/software/wehservers/studio/v3fixpacks.html

FIX PACK 2 IS NOW AVAILABLE FOR BOTH
WEBSPHERE STupio ENTRY EDITION AND

STANDARD EDITION. FiXx PACK 2 UPDATES
YOUuR Stupio V3.0.1 or V3.0 PRODUCT
SO THAT IT IS AT V3.0.2. IF YOU ARE USING
ENTRY EDITION, YOU CAN OPT TO REIN-

STALL THE ENTIRE PRODUCT INSTEAD OF
INSTALLING THE FIX PACK. IF YOU HAVE
ALREADY PURCHASED Stupio V3.0, Yyou
CAN ALSO UPGRADE ALL Stupio V3.0
COMPONENTS TO THE LATEST LEVEL OF
FIXES AND IMPROVEMENTS.

www.developer.ib m.com/devcon/

Understanding cryptographic
messages in e-business

by Theodore Shrader, Anthony Nadalin
and Bruce Rich

ﬁis article takes the building blocks of cer-
tificates and signatures — discussed in "Signing
and verifying with certificates in Java," pub-
lished in the January 2000 issue of the
Developer Connection Technical Magazine —
and demonstrates how they are used in today’s
e-business transactions. In particular, this arti-
cle introduces the Public Key Cryptography
Standards (PKCS) and the use of the signed
data in Secure/Multipurpose Internet Mail
Extensions (S/MIME) transactions.

Certificates are a unique and standard way
in which users and entities can publicly repre-
sent themselves in electronic commerce. When
users have certificates, they have placed infor-
mation about themselves, such as their name
and e-mail address, in the public domain with
a way for that information to be verified or
revoked. A certificate also can contain the
user’s or entity’s public key, and this key plays
an integral role in the signature process.

The signature process utilizes the user’s
public key and associated private key to pro-
vide for the verification of data. A key pair
algorithm uses a random value or other seed
to generate a public and private key pair. A
user can sign data, such as a message, by run-
ning the data through a signature algorithm
that also takes the associated private key. The
recipient of the data and signature can verify
the signature value by running the signature,
data and the user’s public key through the
verification algorithm, which is the counter-
part to the signature algorithm. If the algo-
rithm returns true for verification, the recipi-
ent knows that the data originated from the
sender and that it was not modified in transit.

Public-Key Cryptography Standards (PKCS)
RSA Security Inc. and a consortium of com-
panies developed the first pieces of PKCS in
1991. The set of PKCS standards has expanded
and matured to encompass everything from
defining encryption techniques (PKCS #1 and
#5) to the use of smartcards and electronic
tokens (PKCS #11 and #15). The standards
include PKCS #7, which describes how signed

26

sesssssssssssssssnnns

sesssssssnnse cessssssssssssssssnans

cesssssssssssns

and encrypted data should be presented, and
PKCS #8, which defines the format for private
keys, including encrypted private keys. PKCS
#9 defines a set of attributes used by many of
the PKCS standards. When users request a cer-
tificate from a Certificate Authority (CA), they
send their public key in a PKCS #10 object to
the CA and, once approved, the CA issues a
certificate that is wrapped in a PKCS #7 object.

PKCS #12 defines a format for packaging
various objects together in a single file. For
example, when users export a certificate from a
Web browser’s certificate database, the Web
browser typically creates a password-protected
PKCS #12 file containing the exported certifi-
cate and accompanying private key. PKCS #12
files are meant to be interchangeable, allowing
them to be imported into another Web browser
or system certificate database. The full set of
PKCS standards is available for review at
http://www.rsasecurity.com/rsalabs/pkes/.

Most Internet and intranet transactions are
conducted using one or more of the PKCS stan-
dards. A good user interface shields users from
needing to know that PKCS standards and
objects are being used under the covers, but be
assured, they play a key roll in ensuring that
transactions can be verified and kept secret. In
particular, most e-business transactions exploit
objects defined by PKCS #7.

PKCS #7: Cryptographic message
syntax standard

The PKCS #7 standard includes a host of

Mastery of these
underlying standards help
customers focus on their

business objectives without

having to know the infrastructure
details that keep their

transactions safe
and secure.

sessssnsns

esssssssenns “esesssssesssesssssesssesssssannes

csssesnns

widely used objects. The most popular objects
include EnvelopedData and SignedData. The
EnvelopedData object allows senders to
encrypt data with a secret key. (Typically, the
application that creates the EnvelopedData
object automatically creates the secret key so
that the caller does not need to generate it.)
The secret key also is encrypted for each
recipient, using the recipient’s public key.
Once the EnvelopedData object arrives, each
recipient can use the private key to decrypt
the secret key, which in turn can be used to
decrypt the data. Popular encryption algo-
rithms include RC2, DES and Triple DES.

The SignedData object allows senders to
package and sign data and recipients to verify
the signed data. This object contains a number
of attributes and subobjects. The top layer is
composed of the digest algorithm, encapsulat-
ed contents, a set of certificates and a set of
Certificate Revocation Lists (CRLs).
Applications can use CRLs to determine that
the certificates are still valid and have not
been revoked by the issuing CA. A set of
SignerInfo objects forms the second layer.
Each SignerInfo object includes the issuer and
serial number corresponding to a certificate in
the parent SignedData certificate set, the
digest and signature algorithms, signed and
unsigned attributes, and the signature value
itself. Popular digest and signature algorithms
include SHA1withDSA and MD5withRSA.

Note that not all fields are required. For
example, CRLs are rarely packaged with
SignedData objects. Additionally, the
SignedData object is structured to allow more
than one user or entity to sign the data. Each
signer is represented by a SignerInfo object.
No matter how many users sign the data, the
SignedData object does not replicate the data
to be signed. It is enclosed once at the top
layer in the encapsulated contents.

Different types of signed data
The fact that not all fields are required
means that applications can use the
SignedData object in a variety of forms. The
first form a SignedData object can take pack-
ages the signed contents and at least one sig-
nature. When populated with contents and

one or more Signerlnfo objects, recipients of

the SignedData object can verify that the con-
tent was signed by the certificate corresponding
to the SignerInfo object.

Frequently, senders construct the
SignedData object without contents and wind
up sending the contents along with the separate
SignedData object to recipients. This second
form is known as a signature-only SignedData
object. The signature-only object contains the
signature value and information about the sign-
er to allow recipients to take these values along
with the detached message and verify the signa-
ture normally. Recipients cannot use the
SignedData object itself to verify the signature
on each SignerInfo object since the verification
algorithm requires the detached contents to be
included as part of its parameters.

The third most popular form of the
SignedData object is known as certificate-only.
Earlier, we discussed how users could send a
PKCS #10 message to a CA to request a certifi-
cate. In response, the CA can send back a cer-
tificate-only SignedData object. This object only
contains a certificate; it does not contain any
contents or SignerInfo objects, since there were
no contents to sign.

The PKCS #7 standard allows objects to be
wrapped within other objects. For example, a
user can seal a message by first signing the mes-
sage by creating a SignedData object. Next, the
user can encrypt the SignedData object by cre-
ating an EnvelopedData object that takes the
SignedData object as its contents to encrypt. To
unseal, recipients would decrypt the sealed
object to gain access to the SignedData and ver-
ify the signature for each of the SignerInfo
objects contained in the SignedData object
before extracting the message enclosed within.

The PKCS #7 standard has continued to
evolve. The most recent version of the standard
is reflected in RFC 2630, located at
http://www.imc.org/rfc2630. This version
upgrades the objects and attributes to support
additional functionality.

Sending signed data in e-business

Let’s say that Ben wants to use his e-mail
application to send a signed message to his
business colleague, Patrick, who lives near
Antietam Creek. All Ben needs to do is compose
the message and select the signed message
checkbox before pressing the send button.
When Patrick receives the message, his e-mail
application displays the message along with an
icon indicating that the message was signed and
verified. Patrick can rest assured that Ben sent
the message and that the contents were not
tampered with in transit.

seesesssescssnsscssnnne

sessesscecsssssssssns

teseccscsnns

Sending signed data is a simple
process for the user, but this process is
more complicated under the graphical
interface. Developers of e-mail programs
and any application that sends and
receives signed data needs to be involved
in the intricacies of the signing and veri-
fication process.

Before delving into the details of the
transaction, let's first examine the use of
S/MIME. To send secure messages
between parties, developers have created
the S/MIME standard, which extends the
MIME standard. The S/MIME standard
builds upon the PKCS standards to allow
applications to send secure data through
such public mail protocols as the Simple
Mail Transfer Protocol (SMTP). Today’s
applications implement version 2 of the
S/MIME specifications. Work on the ver-
sion 3 specifications currently is underway.

S/MIME Version 2 builds upon the
PKCS #7 and #10 objects. The MIME file
extensions convey the types of supported objects:
* p7m - EnvelopedData or SignedData

with contents
* p7s - SignedData with signature(s) only
* p7c - SignedData with certificate(s) only
* pl0 - CertificationRequest object

S/MIME further wraps the SignedData and
EnvelopedData objects in a PKCS #7
ContentInfo object that consists of the content
type and content fields. The ContentInfo object
helps senders package the different PKCS #7
objects in a common object. The content type
field helps recipients to identify the transmitted
object and use the content field to decode it.

Figure 1 shows how an application, such as
an e-mail program, signs and sends Ben’s mes-
sage to Patrick. Once Ben composes his message
and presses the send button, the application
extracts Ben’s private key from the application’s
keystore or certificate database. The application
feeds the private key and message into the sign-
ing algorithm, such as MD5withRSA, and gener-
ates a signature. This signature, along with other
information, is bundled into a signature-only
SignedData object. Before sending the message,
the application constructs a p7s S/MIME mes-
sage with MIME header information, original
message and SignedData object. MIME header
information includes such information as the
content transfer encoding, which is base64 for
PKCS objects. Finally, the application sends the
S/MIME message to Patrick via SMTP.

Figure 2 shows how Patrick’s application

receives and verifies Ben’s message. The applica-

Ben sends a message.

by

Message sent
to Patrick.

1. Application extracts Ben's private key from the certificate or keystore database.

signs the with Ben's private key, creates a p7s multipart

Patrick receives
message from Ben.

2. 5
S/MIME message, and sends it to Patrick.

Figure 1.Sending a Signed Message

Signature verified with
the message and public key.

1. Application verifies the MIME headers.

2. Application extracts and verifies the certificate.

3. Application extracts the signature and verifies it with the
message and the public key from the certificate.

Figure 2. Receiving and Verifying a Signed Message

. tion first verifies the MIME headers in the

sesssssscsssssssessnnse

tesscssessccsssssnes

S/MIME message. If the headers indicate a
pkes7-signature type, the application extracts the
certificate corresponding to each SignerInfo
from the SignedData object and verifies it by
tracing the certificate chain back to a trusted
root CA. If the certificate is verified, the applica-
tion extracts the public key from the certificate
and extracts the signature(s) from the SignerInfo
objects in the SignedData object. The applica-
tion verifies each signature with the message
and corresponding public key, returning true or
displaying the signed and verified graphic if the

verification was successful.

Conclusion

This article discussed the popular crypto-
graphic message standards, PKCS and S/MIME,
that are in use today. Using PKCS objects to
sign data is not limited to e-mail. Applications
can sign and encrypt various formats of binary
data in all types of e-business transactions, par-
ticularly those that travel across public net-
works. A developer’s mastery of these underly-
ing standards helps customers focus on their
business objectives without having to know the
infrastructure details that keep their transac-
tions safe and secure.

For additional information:

* On PKCS standards, visit http://
www.rsasecurity.com/rsalabs/pkes/.

* On the S/MIME working group, consult
http://www.imc.org/ietf-smime/.

27

\\‘W\\f.d("\’(‘loper.il)m.(f()m/ devcon/

All that JAAS: An overview of the
Java Authentication

and Authorization Services

by Bruce Rich, Anthony Nadalin
and Theodore Shrader

On April 4, 1999, JavaSoft published the
specification for a new standard extension at
http://java.sun.com/security/jaas. The
acronym for the extension is JAAS (pro-
nounced “jazz”), which stands for “Java
Authentication and Authorization Services.”
This article presents an overview of JAAS.

What it is; why it was created, and some of the : available sometime in the first quarter of

rationale behind the current design.

The current Java 2 security model pro-

gin (the directory or URL) of the classes that
currently are active, as well as their logical
origin, the identity of the organization that
produced the classes, as proved by digital sig-

nature. This model serves well the browsers

that first popularized Java, as it deals effective-

ly with the issues of mobile code.

to add an awareness of the user trying to run
the applet or application and augments the
Java 2 security model to allow both the speci-

fication of permissions that take into account a

user’s identity and to enforce these permis-
sions at runtime. The first augmentation is
what would be referred to as
“Authentication.” The latter two additions
would be referred to as “Authorization.”

JAAS extends Java’s reach

Java already enjoys success on the desktop

and in the browser. For Java to capture the
enterprise backend environment, it needs to

interact with secure operating systems,

resource managers and applications that today

are concerned about the identity of the per-
son or computer attcmpting to execute the
code. JAAS allows Java to interact with
underlying security applications, learn what
the current identities are, possibly modulate

these identities (for example, “log in”), reflect

these identities to the Java runtime and

28

. enforce access controls specified in terms of
: these identities. :
: Although it is expected that JAAS capabil-
ities will be rolled into the Java base, it is :
: important to get feedback on what the right
. set of capabilities should be, and it is much
: easier to get feedback and make changes if

: JAAS is first available as an extension. When
interfaces stabilize, JAAS functionality then

¢ could be incorporated in the Java base.

The final release of JAAS 1.0 should be

year 2000. It will be available only from Sun

JAAS extends the Java 2 security model
. Edition, V 1.3 and Java 2 Runtime

Environment, V 1.3. IBM will provide JAAS

vides fine-grained, policy-based access control :

for both applets and applications. The permis- : 1.0 for IBM platforms and Linux with the

sion model takes into account the physical ori- IBM Developer Kit, Java Technology
Edition, V 1.3, as well as a slightly-modified
- version of JAAS for IBM platforms with the
: IBM Developer Kit, Java Technology

. Edition, V 1.2.2.

Microsystems on Java 2 SDK, Standard

JAAS goals

JAAS is designed with several goals in mind:
* 1. JAAS allows “simple,” pluggable authenti-
JAAS augments the current Java 2 runtime :

cation, which means that the authentica-
tion interfaces are designed to hide as
much complexity as possible. “Pluggable
authentication” means that the interfaces
are abstract enough that alternate authen-
tication mechanisms should be able to be

substituted without security-casual applica- : .
y PP : ers wrestled with was how to represent the

tions needing to know or care.

JAAS allows simple,
pluggable, policy-based

and stackable authentication,
and allows user-hased

permissions be a simple

extension of the current
permission model in an
easily understood way.

2. JAAS allows “policy-based authentica-

: tion,” which means that security-casual
applications need not concern themselves
with the exact authentication mechanisms
currently in use. The default login config-
uration mechanism for JAAS is a configu-
ration file, so that applications need nei-
ther know nor care what authentication is

happening.

3. JAAS allows “stackable authentication,”

which means that multiple authentication
mechanisms might need to be successful
before an authorized context is estab-
lished. For example, to run the “testDB2”
application, a Kerberos login and a DB2
login are required.

4. JAAS allows user-based permissions to be a

“simple extension” of the current permis-
sion model, which means that the current
Java 2 permission model is preserved and
that the additional capability is provided in
an extensible, easily understood way.

Fundamental abstractions in JAAS

Now that the overview-level features and

: goals of JAAS have been covered, it’s time to

“open the hood” and examine JAAS in some-
what greater detail. JAAS is contained in sev-
eral packages rooted at javax.securily.auth,

. with some implementation classes in vendor-

. specific packages.

One of the first issues that the JAAS design-

. “user,” “machine” or the authenticated identity
. with which we wish to associate permissions.

: Earlier versions of Java moved in the direction
:of using java.security.Identity, which is a class

: (now deprecated) that said that users had a
name and java.security.Certificates with which

: to prove identity. Identity’s biggest drawback

: was its insistence that Certificates were an essen-
: tial part of an authenticated identity. Since

* Certificates are obviously not part of all authen-
tication mechanisms, Identity was rejected by

. the JAAS designers on the grounds of insuffi-

: cient generality. Another strong contender was
java.security.Principal, which is a simple inter-
: face whose main method is simply a getName()
method that returns a java.lang.String. The

JAAS designers opted to go with
javasecurity.Principal, because it seemed that all
authentication mechanisms (to be usable) repre-
sent users as having a printable name.

Having decided that Principal would be a
key abstraction, the next issue was how to
aggregate them to represent an authenticated
context. Since one of the JAAS goals was to
allow stackable authentication, it was obvious
that one could easily end up with multiple
Principals in one authenticated context. So,
without much discussion,
javax.security.auth.Subject was chosen to rep-
resent this collection of Principals.

With somewhat more controversy, the
JAAS designers concluded that Principals may
have some sort of proof of identity that they
need to be able to provide at a moment’s
notice, and these proofs of identity may
include sensitive information, so a set of pub-
lic credentials and a set of private credentials
were also added to Subject. Since the content
of a credential may vary widely across authen-
tication mechanisms, from a simple password
to a fingerprint (to infinity and beyond!), the
type of a credential was simply left as
java.lang.Object. Relationships between
Principals and credentials, if any, were left as
an exercise for the implementor of the partic-
ular Principal class (or more likely, the partic-
ular LoginModule class). From a JAAS per-
spective, the only difference between private
and public credentials is that a particular
javax.security.auth.AuthPermission is required
for access to the set of private credentials.

Enabling a Java program for JAAS

An important feature in the JAAS design is
the mechanism by which an authenticated con-
text is set up. Given a multitude of situations in
which authentication is unnecessary, the JAAS
designers did not want to make it part of the
normal dispatch path for a class or instance
method. Thus it was decided that if a Java pro-
gram wishes to request whatever authentication
has been requested for it, it should construct a
javax.security.auth.LoginContext and call its
login() method. This annotates a Subject with
appropriate authenticated identities. To assume
the identity of that Subject, the program calls
Subject.doAs(Subject,java.security.PrivilegedActio
n), which runs the specified PrivilegedAction as
that Subject, then returns to the original secu-
rity state. When the program has no further
need of the authenticated identities, it can sim-
ply call the LoginContext’s logout() method. In

L N I P A A

L M R R A R R i O E T R X T o 1 T ST s

keeping with the JAAS goal of simplicity, there
are no parameters on either of these calls.
There are parameters on the LoginContext
constructor, however. The first of these is sim-
ply a java.lang.String. This is used as an index
into a JAAS configuration file, which locates
the appropriate LoginModule(s) to be used to
authenticate the current user of the program.
The usage of this index is entirely up to the
Java program, and could be a mechanism to
deliberately select a particular type of authenti-
cation to be used. If the program is security-
casual, it might simply pass in its own class
name as the String and pick up whatever
authentication had been configured for it. This

would look something like:

The additional constructors for
LoginContext deal with some increasingly com-
plex situations and are covered briefly with an
example in the next section.

Dealing with all possible
authentication mechanisms
Another of the issues that the JAAS
designers had to wrestle with was the wide
variety of authentication mechanisms and the
various arguments that they might take. For
example, authentication could be as simple as
an account name (or user name) and a pass-
word or could require a distinguished name
and the ability to prove identity through digi-
tal signature or could require a name and a
fingerprint, or a retinal scan, or ad infinitum.
Since one of the goals of JAAS was to have a
pluggable authentication mechanism, the
framework methods had to be generic enough
to allow all authentication mechanisms to
work and simple enough so that complexity
need not be a hindrance to authentication
mechanism providers. This issue is adroitly
handled by having the four authentication
methods visible at the
javax‘security.auth.spi.LoginModule API,
login(), commit(), abort(), and logout() take
absolutely no parameters, and return nothing
(in programming, this is a return type of
void). This approach certainly succeeds in not
requiring authentication providers to add any-

000000000000 0000000000000000000000000000s060000 s

D T N N N S S

9901060000008 0408000008089 8800 ¢900060/08:0066800608600060868066060000000:008060086800

esecccscscscsns

see

thing artificial to their current interfaces, but

still leaves the issue of how to provide the
additional information needed.

The mechanism for providing
additional information is to have an
initialize() method in each LoginModule,
where one may or may not pass in a
javax.security.auth.callback.CallbackHandler.
These callback routines, if provided, can be
used in an implementation- and environment-
specific manner to gather additional informa-
tion to satisfy the needs of the particular
LoginModule. Translated, this means that if a
LoginModule needs some information to
authenticate the user, it can examine the array
of Callbacks that it was initialized with to see if
it has a mechanism to derive the necessary
data. For example, if a userid and password are
needed, the LoginModule can examine the
Callback array to see if it contains a Javax.secu-
rity.auth.callback.NameCallback and a
javax.security.auth.callback.PasswordCallback.
If so, it can call them to attempt to get the nec-
essary information.

Developers may wonder “Just how did the
Callback array get passed in to the initialize()
method?” The answer is that one of the more
complicated LoginContext constructors (that
were glossed over earlier) takes a
CallbackHandler and uses it when connecting
to LoginModules.

Authorization ‘

Now that the Authentication framework
has been discussed, it is time to move on to a
brief overview of the Authorization piece of
JAAS. JAAS extends the Java 2 permission
model to incorporate the idea of authenticat-
ed identities in the permission itself. This
extension narrows the scope of the permis-
sion being granted to only the Principal
specified in the permission. To illustrate, the
following entry in a normal Java 2 policy file
would grant READ access to the file “foo”
to all classes in the codebase
“http://gordo.austin.ibm.com/barnone”:

In a JAAS-extended policy file, the
following entry would grant READ access
to the file “foo” to all classes in the codebase
“http://gordo.austin.ibm.com/barsome,”
but only if the current Subject contained
a principal (in this case, a

CONTINUED (

)N PAGE 30

www.developer.ibm.com/ devcon/

CONTINUED FROM PAGE 29

com.ibm.security.auth.NTUserPrincipal)
named “bob:”
grant codeBase http://gordo.austin.ibm.com/barsome/*,
principal com.ibm.security.auth.NTUserPrincipal “bob”{
permission java.io.FilePermission “c:\\foo”, "read";
b ‘

For a more in-depth discussion of JAAS
authentication and authorization, consult the
whitepaper entitled “User Authentication and
Authorization in the Java Platform” (currently
at hltp://ja\'a.sun.(,-()m/security/jaas/dov/
jaas.html).

Additional information

There are a few other points that need to
be made regarding JAAS. First, JAAS is
intended to be the underpinning for the Java
2 Extended Edition (J2EE) Enterprise
JavaBeans (EJB) security model. Given the
importance of EJB in e-business, one may
expect to see rapid adoption of JAAS.

Second, in part due to the relationship
between JAAS and EJBs, IBM plans to offer
a version of JAAS bundled with the IBM

Developer Kit, Java Technology Edition,

V1.2.2. For the most part, this earlier version :

of JAAS is compatible with the Kestrel ver-
sion (V1.3.0). The biggest noticeable differ-
ence is that the pre-Kestrel JAAS requires

the use of a custom security manager,

security.auth.SecurityManager, rather than

system default of java.lang.SecurityManager.
For additional details, one should consult the
programming information included with the
IBM Developer Kit.

Lastly, JAAS is expected to be used as
the underpinning for Remote Method
Invocation (RMI) security enhancements.
For more details on this, please refer to
http://java.sun.com/products/jdk/rmi/.

Conclusion
The Java 2 platform security framework is
an impressive base for secure computing in
Java. JAAS builds on this foundation to inte-
grate more closely with secure operating sys-
tems, resource managers and applications on

ente rp rise servers.

Additional reading

For the most recent, up-to-date information :

on the JAAS AP, see http://java.sun.com/
products/jaas/ (until early availability is
over, JAAS information can be found at
http://developer.java.sun.com/developer/
earlyAccess/jaas/).

IBM MAINTAINS COMMITMENT TO OPEN
STANDARDS AND J2EE TECHNOLOGY

RECENTLY, THERE WAS SIGNIFICANT
PRESS COVERAGE OF SUN'S DECISION
NOT TO SUBMIT JAVA TO THE EUROPEAN
ComPUTER MANUFACTURING ASSOCIA-
TioN (ECMA), THE INDUSTRY STAN-
DARDS ORGANIZATION SUN AND OTHER
COMPANIES (INCLUDING IBM) AGREED
SHOULD MANAGE THE STANDARDIZATION
OF JAVA. As A REsULT, THE ECMA Is
CONSIDERING PLANS TO PROCEED WITH
THE STANDARDS EFFORT FOR JAVA, A
DECISION IBM SUPPORTS AS A COMPA-
NY DEEPLY COMMITTED TO MULTI-PLAT-
FORM, MULTI-VENDOR STANDARDS.
ALONG THESE LINES, SUN ALSO HAS
ANNOUNCED "BRANDING" OF JAVA 2
ENTERPRISE EDITION (J2EE®) As A
SUN PRODUCT INSTEAD OF AN OPEN
STANDARD. ALTHOUGH IBM HAS MADE
NO COMMITMENT TO SUN'S RECENTLY
ANNOUNCED BRANDING CONCEPT FOR
J2EE, THIS IN NO WAY NEGATES IBM's
COMMITMENT TO J2EE TECHNOLOGY.
WE CONTINUE TO WORK WITH SUN ON
THE DEVELOPMENT OF JAVA AND SUP-
PORT THE ENTERPRISE JAVA TECHNOLO-
GY THAT COMPRISES SUN's J2EE.

EviDENCE? IBM CONTRIBUTED TO THE
DEFINITION OF MORE THAN 80 PERCENT
oF THE J2EE APIs, INCLUDING
ENTERPRISE JAVABEANS (EJB),
JAVASERVER PAGES (JSP), Java
SERVLET, JAVA INTERFACE DEFINITION
LANGUAGE (IDL), JAVA DATABASE
ConnecTivity APl (JDBC), Java
MessAGE SERVICE (JMS), Java
NAMING AND DIRECTORY INTERFACE
(JNDI), Java TransacTion API
(JTA), JAvA TRANSACTION SERVICES
(JTS) ano RMI-IIOP. IBM LED AND
TOOK THE INITIATIVE WITH SUN IN DEFIN-
ING EJB, JTS anp RMI-IIOP AnD
DEVELOPED JOINTLY WITH SUN THE REF-

ERENCE IMPLEMENTATIONS OF JTS AND
RMI-IIOP.

MoRre PROOF? THE DELIVERY OF J2EE
TECHNOLOGY, INCLUDING EJB 1.0,
ServLET 2.1, JSP 1.0, JTSAJTA 1.0, A
sueseT oF JDBC 2.0, JNDI 1.1, RMI-
IOP 1.0, Securmy 1.0 anD XML IN
IBM's WEBSPHERE APPLICATION SERVER
FAmiLY (STANDARD EDITION, ADVANCED
EpimoN, ENTERPRISE EDITION) V3.0 TODAY
— WITH PLANS TO DELIVER FULL SUPPORT
FORTHE J2EE APIs BY THE END OF 2000
— AND MQSEREES supPORT OF JMS BY
THE END OF THIS YEAR, IS FURTHER EVI-
DENCE OF THE COMPANY'S COMMITMENT TO
THE IMPORTANCE OF JAVA AND J2EE IN
OUR MIDDLEWARE PORTFOLIO.

AND FINALLY, [IBM's APPLICATION
FRAMEWORK FOR E-BUSINESS, WHICH
ILLUSTRATES IBM's COMMITMENT TO
MULTIPLATFORM, MULTIVENDOR STAN-
DARDS BY OFFERING AN IMPLEMENTA-
TION APPROACH FOR E-BUSINESS AND
DEFINING HOW TO DESIGN AND BUILD
FLEXIBILITY AND OPENNESS INTO APPLI-
CATIONS, INCORPORATES AND WILL CON-
TINUE TO PROVIDE SUPPORT FOR THE
J2EE APIs As DEFINED IN THE J2EE
STANDARD EXTENSION.

IBM CONTINUES TO EVALUATE THE
IMPLICATIONS OF SuN's J2EE BRAND-
ING STRATEGY, AND ITS IMPACT ON OUR
CUSTOMERS, BUSINESS PARTNERS AND
THE 3500+ IBM DEVELOPERS WHO ARE
COMMITTED TO JAVA. PLEASE BE
ASSURED THAT IBM CONTINUES ITS
COMMITMENT TO OPEN INDUSTRY STAN-
DARDS AND TO J2EE TECHNOLOGY.

IBM DeveLoper ConNECTION TECHNICAL MAGAZINE DI REC I OR '

Order numbers in the following countries:
Austria 0660 8705 Mexico (D.F.) 5270 5990
Canada 800-561-5293 Mexico (Interior) 01-800-006-3900
Germany 0 130 828041 United States 800-6DEVCON(633-8266)

Electronic Support for the Developer Connection
Release 2 Program

Electronic support is provided through the Internet and 0S/2 BBS. Obtain
technical support or use the forums to exchange messages, ideas, or comments with

Latin and South America order numbers: the Developer Connection team or other subscribers. Note: Refer to the specific

Arg.er}nna (";80(.’-“426 +Rlaibosns 2961 I%l balmdor()?-f)ii f_)”!(l product information for the operating system technical support methods.

BOh‘.'m 02-35 184(.) e Guatemala O:Z-jl ':8:)) Internet users may address their quéstions or comments to

Sl 0800-111426x.1351 = Honduras 32-2319 deveon@us.ibm.com. The DEVCON CFORUM is on the 0S/2 BBS under TalkLink,
Qhﬂe ; ; 800 'l§_2_1.8 anoxo 6970 Panama “2'63? 977 which is a feature under the IBMLink Commercial Services. For TalkLink access,
(‘Volomb'la (Nacmnal)()BO();:.‘))a l':aralgma) :“4_0 o U.S. customers can call 1-800-426-5465; customers outside of the U.S. should contact
Eio!()mh}a (Bogota) glﬁ-l?;g }Ieru 349-0040) their local IBM Marketing Representative. Note: Commercial members of

oot B".a :'3-92“ [vruguay 0-80“-“5_183‘1 (0-800-2-426) PartnerWorld for Developers (formerly IBM Solution Developer Program) can access
Dominican Rep. 26 6‘2161 Venezuela 800-1-5000 the DEVCON CFORUM on the Web from the PartnerWorld for Developers Web page
Ecuador (02) 565-090 >

(www.developer.ibm.com) without specifically signing up for IBMLINK.
Asia/Pacific order numbers:

The Developer Connection can be ordered in Asia/Pacific countries from IBM
in Australia (61 is the country code) and Japan. Please ensure that you dial the
international access code applicable to your country before the listed phone or fax

PartnerWorld for Developers
The Developer Connection is one of a wide range of offerings that are available
as part of PartnerWorld for Developers. In one single resource, PartnerWorld for

number. : . Developers provides technical, business, marketing, and information services that
Anstralia: Phone +61 2-9354 7684 can help you to reduce your development costs, accelerate your development
liax : +61 2-9354 .7766 efforts and showcase and sell your products. Members receive, at no charge, a
E-mail pwdap@aul.lhm.('()m wealth of information about IBM products and technology that can be searched on
Japan: Fax] +81 3-5200 6310 the PartnerWorld for Developers Web site 24 hours a day, seven days a week, at
E-mail 0s2pid@jp.ibm.com www.developer.ibm.com/ :

If you are not a member of PartnerWorld for Developers, why not join now —
registration is free! It takes only a few minutes to register on the Internet, and in
return, you'll receive a membership ID and password to access our services.
Welcome aboard!

Europe and other countries not listed:

The Developer Connection can be ordered directly from IBM in Denmark
(45 is the country code). Please ensure that you dial the international access code
applicable to your country before dialing the appropriate phone or fax number.
Operators speaking the following languages are available:

Danish +45 48 101300 German +45 48 101000 PartnerWorld for Developers Hotline:
Dutch +45 48 101400 Italian +45 48 101600 United States/Canada 1-800-627-8363
English +45 48 101500 Norwegian +45 48 101250 Worldwide 1-770-835-9902
French +45 48 101200 Spanish +45 48 101100 Worldwide Fax 1-770-835-9444.
Finnish +45 48 101650 Swedish +45 48 101150

Fax +45 48 142207 Global Solutions Directory:

The Global Solutions Directory is IBM’s comprehensive, online source for over
30,000 partner solutions. The guide is a worldwide resource for applications, tools
and services. Visit the Guide today at www.software.ibm.com/solutions/isv/

Note: To subscribe to the Developer Connection in South Africa, contact Claudia
Wissler, IBM South Africa, at 27-113029111, ext. 6960.

SV VUGV ENEE TS S SRR OIECO NI CE IO TAURCCH D05 5.8.0.6.00.06:600:00 0956000908086 8 66 neE 6000

IBM may use or distribute any of the information you supply in anyway it believes appropriate without incurrine any oblisation whatsoever. Titles and abstracts, but
y e o) » JOEUDIEY YW Ppropnal 3 e 4 gaton - .

no other portions, of information may be copied and distributed by computer-based and other information service systems. Permission to republish information from this

. LS . o . p . o R LJ T . . .
publication in any other publication of computer-based information systems must be obtained from the Editor, the Developer Connection Technical Magazine.

IBM believes the statements contained herein are accurate as of the date of publication of this document. All specifications are subject to change without notice.
However, IBM, hereby disclaims all warranties, either expressed or implied, including without limitation any implied warranty of merchantability or fitness for a partic-

E . . .p . °© ~ . - I . . - . < . .

ular purpose. In no event will IBM be liable to you for any damages, including any lost profits, lost savings, or other incidental or consequential damage arising out of
the use or inability to use any information provided through this publication even if IBM has been advised of the possibility of such damages, or for any claim by any
other party.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages so the above limitation or exclusion may not apply to you.
e ooy " 5 A q y 5 q AR . Y e O
This publication may contain technical inaccuracies or typographical errors. Also, illustrations contained here may show prototype equipment. Your configuration may
differ slightly. This publication may contain articles by non-IBM authors. These articles represent the views of their authors. IBM does not endorse any non-IBM prod-
ucts that may be mentioned. Questions should be directed to the authors.

This information is not intended to be an assertion of future action. IBM expressly reserves the right to change or withdraw current products that may or may not

. } . . . {‘ . 3 4 . 9 . l " y.
have the same characteristics or codes listed in this publication. It is possible that this material may contain reference to, or information about, IBM products (machines
. . p i . - . . .

and programs), programming or services that are not to be construed to mean that IBM intends to announce such products, programming, or services in your country. All
statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice and represent goals and objectives only.

IBM takes no responsibility whatsoever with regard to the selection, performance or use of the products advertised herein. All understandings, agreements or war-
ranties must take place directly between the software vendors and prospective users.

¥* Trademarks or registered trademarks of the IBM Corporation in the United States or _
other countries or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in Staff
the United States, other countries, or both.
Trademarks or registered trademarks of Microsoft Corporation.

Reglslertq trade m:arl\ in the F_n.m d State s and other countries licensed exclusively Aggistont Tditors Tracey Maroelo:and Luree ik
through X/Open Company Limited (UNIX). J

Graphic Design Stil Point Images, Michael Rainer

Publisher Karen Foley
Managing Editor Jean Swanson

Trademarks or registered trademarks of Lotus Development Corporation.
Trademarks or registered trademarks of Intel, Inc.
All other products and company names are trademarks and/or registered trade-
marks of their respective holders.
© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.

*H o) O

-
=
el
g
%
-
e
&
-l
=
$
>
&
-
=
=

www.developer.ibm.com/devcon/

*T., Printed on Recycled Paper
CT62SNA

August 14-17, 2000

Solutions /

Build leading-edge e-business solutions

Choose the membership

level that works for you...

You can tailor your participation in the
Developer Connection to match your interests and
requirements. Your subscription entitles you to
unlimited Web access for all content in your sub-
scription level. A set of CDs is available for Member,
Advanced and Premier levels.

Guest Level is available on the Web to any
registered application developer. From our Web site
at www.developer.ibm.com/devcon/, you can regis-
ter, review and download sample source code, tech-
nical documents, hints and tips, utilities and Java
and Internet tools. All free of charge.

Member Level includes the Guest Level con- :
tents, while giving you the additional value and con- :

venience of a CD collection, a Java-enabled browser, :

additional documents and non-IBM tools. At the

Member Level, you'll also receive a subscription to

the Developer Connection Technical Magazine.
Advanced Level builds on the Member

Level by also providing compilers, toolkits for IBM

operating systems and IBM e-business Servers. With :

an Advanced Level subscription, you have the tools

to develop Java, Internet, e-business Servers or
purely operating system applications.

Premier Level further extends the Advanced
Level and adds system management tools and a
comprehensive test environment for IBM Software

Server uppli('ulinlh.

Subscribe Today:

UsS 1-800-6DEVCON (633-8266)
Brazil 0800-111 426 r. 1351
Canada 1-800-561-5293

0-800-44-426 92 Interno 2987
+61 2-9354 7684
800-DE-IBM (800-33-426)

Argentina
Asia/Pacific

Venezuela

Europe +45 4-810 1500
Japan 0s2pid@jp.ibm.com
Mexico 5270 5990 (D.F.)
Colombia 9800-17555 (Nacional)
Austria 0660 8705

Germany 0 130 828041

Phone numbers for customers in other countries are

listed on page 31.

